




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省海城市中考数学真题分类(实数)汇编达标测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、计算下列各式,值最小的是(
)A. B. C. D.2、如图,在△ABC中,∠ABC=90°,AB=3,BC=1,AB在数轴上,以点A为圆心,AC长为半径作弧,交数轴的正半轴于点M,则M表示的数为(
)A.2.1 B.-1 C. D.+13、下列二次根式中,与是同类二次根式的是(
)A. B. C. D.4、下列实数:3,0,,,0.35,其中最小的实数是()A.3 B.0 C. D.0.355、实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>06、下列说法正确的是(
)A.-4是(-4)2的算术平方根B.±4是(-4)2的算术平方根C.的平方根是-2D.-2是的一个平方根7、下列说法中正确的是(
).A.0.09的平方根是0.3 B.C.0的立方根是0 D.1的立方根是8、如图,数轴的单位长度为1,如果点表示的数是-1,那么点表示的数是(
).A.0 B.1 C.2 D.3第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.2、若x+3是4的平方根,则x=__________.3、如图,数轴上点A表示的数为a,化简:a_____.4、写出一个比大且比小的整数______.5、的平方根是.6、规定一种新运算“*”:a*b=a-b,则方程x*2=1*x的解为________.7、一个正数的两个平方根的和是__________,商是__________.三、解答题(7小题,每小题10分,共计70分)1、已知a是的整数部分,b是的小数部分,|c|=,求a-b+c的值.2、计算:(1)(π﹣2020)0﹣2+|1﹣|.(2)﹣.3、计算:(1)3-9+3;(2)()+();(3)+6-2x;(4)+(-1)0.4、“说不完的”探究活动,根据各探究小组的汇报,完成下列问题.(1)到底有多大?下面是小欣探索的近似值的过程,请补充完整:我们知道面积是2的正方形边长是,且.设,画出如下示意图.由面积公式,可得______.因为值很小,所以更小,略去,得方程______,解得____(保留到0.001),即_____.(2)怎样画出?请一起参与小敏探索画过程.现有2个边长为1的正方形,排列形式如图(1),请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小敏同学的做法是:设新正方形的边长为.依题意,割补前后图形的面积相等,有,解得.把图(1)如图所示进行分割,请在图(2)中用实线画出拼接成的新正方形.请参考小敏做法,现有5个边长为1的正方形,排列形式如图(3),请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(4)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.5、计算:(1);(2)6、定义:对于一个两位数x,如果x满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S(x).例如,a=13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S(13)=4.(1)下列两位数:20,29,77中,“相异数”为,计算:S(43)=;(2)若一个“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10,求相异数y;(3)小慧同学发现若S(x)=5,则“相异数”x的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例.7、已知:实数a,b在数轴上的位置如图所示,化简:+﹣|a﹣b|.-参考答案-一、单选题1、A【解析】【分析】根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.【详解】根据实数的运算法则可得:A.;B.;C.;D.;故选A.【考点】本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键..2、B【解析】【分析】先根据勾股定理求出AB的长,进而可而出结论.【详解】∵△ABC中,∠B=90°,AB=3,BC=1,∴AC===.∵A点表示−1,∴M点表示-1故选:B.【考点】本题考查勾股定理及实数与数轴,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3、A【解析】【分析】先将各式化为最简二次根式,再利用同类二次根式定义判断即可.【详解】解:A、原式,符合题意;B、原式,不符合题意;C、原式,不符合题意;D、原式不能化简,不符合题意.故选:A.【考点】此题考查了同类二次根式,几个二次根式化为最简二次根式后,被开方数相同的即为同类二次根式.4、C【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数比较大小的方法,可得﹣<0<0.35<<3,所以最小的实数是﹣,故选:C.【考点】本题考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.5、B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【考点】本题考核知识点:实数大小比较.解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.6、D【解析】【分析】根据算术平方根、平方根的定义逐项判断即可得.【详解】A、,16的算术平方根是4,则此项错误,不符题意;B、,16的算术平方根是4,则此项错误,不符题意;C、,4的平方根是,则此项错误,不符题意;D、,4的平方根是,则是的一个平方根,此项正确,符合题意;故选:D.【考点】本题考查了算术平方根、平方根,掌握理解定义是解题关键.7、C【解析】【分析】根据平方根,算术平方根和立方根的定义分别判断即可.【详解】解:A、0.09的平方根是±0.3,故选项错误;B、,故选项错误;C、0的立方根是0,故选项正确;D、1的立方根是1,故选项错误;故选:C.【考点】本题考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键.8、D【解析】【分析】直接利用数轴结合点位置进而得出答案.【详解】解:∵数轴的单位长度为1,如果点表示的数是-1,∴点表示的数是:3故选D.【考点】此题主要考查了实数轴,正确应用数形结合分析是解题关键.二、填空题1、【解析】【分析】直接根据已知数据变化规律进而将原式变形求出答案.【详解】由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=.故答案为.【考点】:此题主要考查了数字变化规律,正确将原式变形是解题关键.2、-1、-5【解析】【详解】由题意得:x+3=2或者x+3=-2,解得:x=-1或-5.故答案:-1、-5.3、2【解析】【分析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【详解】解:由数轴可得:0<a<2,则a+=a+=a+(2﹣a)=2.故答案为:2.【考点】本题主要考查了二次根式的性质与化简,解题的关键是正确得出a的取值范围.4、2(或3)【解析】【分析】先分别求出与在哪两个相邻的整数之间,依此即可得到答案.【详解】∵1<<2,3<<4,∴比大且比小的整数是2或3.故答案为:2(或3)【考点】本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出与在哪两个相邻的整数之间是解答此题的关键.5、±2【解析】【详解】解:∵∴的平方根是±2.故答案为±2.6、【解析】【分析】根据题中的新定义化简所求方程,求出方程的解即可.【详解】根据题意得:x-×2=×1-,x=,解得:x=,故答案为x=.【考点】此题的关键是掌握新运算规则,转化成一元一次方程,再解这个一元一次方程即可.7、
0
-1【解析】【分析】根据平方根的性质可知一个正数的两个平方根互为相反数,由此即可求出它们的和及商.【详解】∵一个正数有两个平方根,它们互为相反数,∴一个正数的两个平方根的和是0,商是-1.故答案为0,-1.【考点】本题考查了平方根的定义.注意:①一个正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根.④1或0平方等于它的本身.三、解答题1、4或4-2.【解析】【分析】先进行估算的范围,确定a,b的值,再代入代数式即可解答.【详解】解:∵2<<3,∴a=2,b=-2,∵|c|=,∴c=±当c=时,a-b+c=4;当c=-时,a-b+c=4-2故答案为:4或4-2.【考点】本题考查代数式的求值,涉及无理数的估算和绝对值.估算无理数的取值范围是本题的关键.2、(1)-2;(2)4【解析】【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式===;(2)原式===4.【考点】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键.3、(1)15;(2)6;(3)3;(4)+1.【解析】【分析】根据二次根式的公式化简即可.【详解】(1)
原式=12-3+6=(12-3+6)=15;
(2)
原式=4+2+2=6;
(3)
原式=2+3-2=3;
(4)
原式=3+1=+1.【考点】本题考查二次根式的计算,注意合并同类二次根式.4、(1),,,;(2)见解析【解析】【分析】(1)根据图形中大正方形的面积列方程即可;(2)在网格中分别找到1×1和1×2的长方形,依次连接顶点即可.(1)由面积公式,可得∵值很小,所以更小,略去,得方程,解得(保留到0.001),即.故答案为:,,,;(2)小敏同学的做法,如图:排列形式如图(3),如图:画出分割线并在正方形网格图(4)中用实线画出拼接成的新正方形,如图所示【考点】本题考查了估算无理数的大小,考查数形结合的思想,根据正方形的面积求出带根号的边长是解题的关键.5、(1)(2)【解析】【分析】(1)先化简二次根式,同步进行二次根式的乘法与除法运算,再合并即可;(2)先计算乘方,零次幂,负整数指数幂,同步化简绝对值,再合并即可.(1)解:(2)【考点】本题考查的是二次根式的混合运算,零次幂,负整数指数幂的含义,掌握以上基础运算是解本题的关键.6、(1)29,7;(2)46;(3)正确,理由详见解析.【解析】【分析】(1)根据“相异数”的定义可知29是“相异数”,20,77不是“相异数”,利用定义进行计算即可,(2)根据“相异数”的定义,由S(y)=10,列方程求出“相异数y”的十位数字和个位数字,进而确定y;(3)设出“相异数”的十位、个位数字,根据“相异数”的定义,由S(x)=5,得出十位数字和个位数字之间的关系,进而得出结论.【详解】解:(1)根据“相异数”的定义可知29是“相异数”,20,77不是“相异数”S(43)=(43+34)÷11=7,故答案为:29,7;(2)由“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10得,10k+2(k﹣1)+20(k﹣1)+k=10×11,解得k=4,∴2(k﹣1)=2×3=6,∴相异数y是46;(3)正确;设“相异数”的十位数字为a,个位数字为b,则x=10a+b,由S(x)=5得,10a+b+10b+a=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-河北-河北水土保持工五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江西-江西兽医防治员三级(高级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江苏-江苏殡葬服务工二级(技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-广西-广西食品检验工二级(技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西理疗技术员三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-广西-广西机械热加工二级(技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东管道工三级(高级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东兽医防治员三级(高级工)历年参考题库典型考点含答案解析
- 烹饪甜品基础知识培训课件
- 2020-2025年监理工程师之监理概论高分通关题型题库附解析答案
- 合伙开公司必签的五份协议
- Module9 Unit2 Wishing You Happiness Every Day(说课稿)-2023-2024学年外研版(三起)英语六年级下册
- 粤沪版物理九年级上册第十二章第1节《认识内能》同步练习
- 采油工培训教学计划
- 设计概论讲课课件(第三版杨晓琪)
- 小学数学分数四则混合运算200题带答案
- 《血管活性药物静脉输注护理》团体标准解读
- 行政管理内控制度模版(3篇)
- GB/T 3324-2024木家具通用技术条件
- 小学音乐跨学科教学的常见问题与应对策略
- 小红书食用农产品承诺书示例
评论
0/150
提交评论