考点解析重庆市大学城第一中学7年级数学下册第六章 概率初步综合训练试题(详解版)_第1页
考点解析重庆市大学城第一中学7年级数学下册第六章 概率初步综合训练试题(详解版)_第2页
考点解析重庆市大学城第一中学7年级数学下册第六章 概率初步综合训练试题(详解版)_第3页
考点解析重庆市大学城第一中学7年级数学下册第六章 概率初步综合训练试题(详解版)_第4页
考点解析重庆市大学城第一中学7年级数学下册第六章 概率初步综合训练试题(详解版)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市大学城第一中学7年级数学下册第六章概率初步综合训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.0.2 B.0.3 C.0.4 D.0.52、“抚顺市明天降雪的概率是70%”,对此消息,下列说法中正确的是()A.抚顺市明天将有70%的地区降雪B.抚顺市明天将有70%的时间降雪C.抚顺市明天降雪的可能性较大D.抚顺市明天肯定不降雪3、一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.4、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为()A. B. C. D.5、“翻开九年级上册数学书,恰好翻到第100页”,这个事件是()A.必然事件 B.随机事件 C.不可能事件 D.确定事件6、下列说法正确的是()A.“明天有雪”是随机事件B.“太阳从西方升起”是必然事件C.“翻开九年数学书,恰好是第35页”是不可能事件D.连续抛掷100次质地均匀的硬币,55次正面朝上,因此正面朝上的概率是55%7、下列说法中,正确的是()A.随机事件发生的概率为B.不可能事件发生的概率为0C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次8、学校招募运动会广播员,从三名男生和一名女生共四名候选人中随机选取一人,则选中男生的概率为()A. B. C. D.9、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为()A. B. C. D.10、下列事件为必然事件的是A.打开电视机,正在播放新闻 B.掷一枚质地均匀的硬币,正面儿朝上C.买一张电影票,座位号是奇数号 D.任意画一个三角形,其内角和是180度第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、在一只不透明的口袋中放入红球5个,黑球1个,黄球n个.这些球除颜色不同外,其它无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为,则放入口袋中的黄球总数n=___.2、一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A.B.C.D.第一步列举出所有________的结果:正正、反反、正反、反正第二步根据概率公式计算:P(两枚硬币都正面朝上)=______3、如果表示事件“三角形的任意两边之和大于第三边”,则________.4、如图,一个可以自由转动的圆形转盘,转盘按1:2:3:4的比例分成A,B,C,D四个扇形区域,指针的位置固定,任意转动转盘1次,则停止后指针恰好落在B区域的概率为_______.5、不透明的袋子中有3个白球和2个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,恰好是白球的概率________.6、P(A)的取值范围:∵m≥0,n>0,∴0≤m≤n.∴0≤m/n≤1,即_______≤P(A)≤_______.当A为必然事件时,P(A)=__________;当A为不可能事件时,P(A)=_________.事件发生的可能性越大,它的概率越接近____;反之,事件发生的可能性越小,它的概率越接近______.7、初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性______.(填“大”或“小”).8、一枚质地均匀的骰子的六个面上分别刻有1~6的点数,抛掷这枚骰子,若抛到偶数的概率记作,抛到奇数的概率记作,则与的大小关系是______.9、寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为__________.10、不透明的袋子中有5张卡片,上面分别写着数字1,2,3,4,5,除数字外五张卡片无其它差别,从袋子中随机摸出一张卡片,其数字为偶数的概率是_______.三、解答题(6小题,每小题10分,共计60分)1、掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.2、如图,转盘被等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区域的概率是多少?(2)求指针指向的数字能被3整除的概率.3、为庆祝中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,某校准备组织学生参加唱歌,舞蹈,书法,国学诵读活动,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种)的问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)这次抽样调查的总人数为______人;(2)若该校有1400名学生,估计选择参加舞蹈的有多少人?(3)学校准备从推荐的4位同学(两男两女)中选取2人主持活动,利用画树状图或表格法求恰为一男一女的概率.4、足球比赛前,由裁判员拋掷一枚硬币,若正面向上则由甲队首先开球,若反面向上则由乙队首先开球,这种确定首先开球一方的做法对参赛的甲、乙两队公平吗?为什么?5、一个密码锁的密码由四个数字组成,每个数字都是0~9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开.粗心的小明忘了中间的两个数字,他一次就能打开该锁的概率是多少?6、为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动,赛后随机抽取了部分学生的成绩,按得分划分为A,B,C,D[A等级(0≤x≤100),B等级(80≤x<90),C等级(70≤x<80),D等级(x<70)]四个等级,并绘制了如下不完整的统计表和统计图.根据图表信息,回答下列问题:(1)表中a=;扇形统计图中,C等级所占的百分比是;D等级对应的扇形圆心角为度;若全校共有1800名学生参加了此次知识竞赛活动,请估计成绩为A等级的学生共有人.(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率.-参考答案-一、单选题1、B【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【详解】解:∵“陆地”部分对应的圆心角是108°,∴“陆地”部分占地球总面积的比例为:108÷360=,∴宇宙中一块陨石落在地球上,落在陆地的概率是=0.3,故选B.【点睛】此题主要考查了几何概率,以及扇形统计图.用到的知识点为:概率=相应的面积与总面积之比.2、C【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【详解】解:“抚顺市明天降雪的概率是70%”,正确的意思是:抚顺市明天降雪的机会是70%,明天降雪的可能性较大.故选C.【点睛】本题考查概率的意义,解题关键是理解概率的意义反映的只是这一事件发生的可能性的大小.3、A【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率是.故选:A.【点睛】本题考查了概率公式的简单应用,熟知概率=所求情况数与总情况数之比是解题的关键.4、C【分析】从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可.【详解】解:∵装有7个只有颜色不同的球,其中4个黑球,∴从布袋中随机摸出一个球,摸出的球是黑球的概率=.故选:C.【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.5、B【详解】解:“翻开九年级上册数学书,恰好翻到第100页”,这个事件是随机事件,故选:B.【点睛】本题考查了随机事件,熟记随机事件的定义(在一定条件下,可能发生也可能不发生的事件称为随机事件)是解题关键.6、A【分析】直接利用随机事件的定义以及概率的意义分别分析得出答案.【详解】解:A、“明天有雪”是随机事件,该选项正确,符合题意;B、“太阳从西方升起”是不可能事件,原说法错误,该选项不符合题意;C、“翻开九年数学书,恰好是第35页”是随机事件,原说法错误,该选项不符合题意;D、连续抛掷100次质地均匀的硬币,55次正面朝上,因此正面朝上的概率是55%,说法错误,该选项不符合题意;故选:A.【点睛】本题主要考查了概率的意义以及随机事件,正确把握定义是解题关键.7、B【分析】根据事件发生可能性的大小进行判断即可.【详解】解:A、随机事件发生的概率为0到1之间,选项错误,不符合题意;B、不可能事件发生的概率为0,选项正确,符合题意;C、概率很小的事件可能发生,选项错误,不符合题意;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能是50次,选项错误,不符合题意;故选:B【点睛】本题考查随机事件与不可能事件的概率,掌握随机事件发生的概率在0到1之间,不可能事件发生的概率为0是关键.8、D【分析】直接利用概率公式求出即可.【详解】解:∵共四名候选人,男生3人,∴选到男生的概率是:.故选:D.【点睛】本题考查了概率公式;用到的知识点为:概率=所求情况数与总情况数之比.9、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案.【详解】解:∵在不透明的布袋中装有1个白球,2个红球,3个黑球,∴从袋中任意摸出一个球,摸出的球是红球的概率是:.故选:B.【点睛】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.10、D【分析】根据事件发生的可能性大小判断即可.【详解】A、打开电视机,正在播放新闻,是随机事件,不符合题意;B、掷一枚质地均匀的硬币,正面朝上,是随机事件,不符合题意;C、买一张电影票,座位号是奇数号,是随机事件,不符合题意;D、任意画一个三角形,其内角和是180°,是必然事件,符合题意;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题1、3【分析】根据概率公式列出关于n的分式方程,解方程即可得.【详解】解:根据题意可得,解得:n=3,经检验n=3是分式方程的解,即放入口袋中的黄球总数n=3,故答案为:3.【点睛】此题考查概率的求法:如果一个事件有种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件的概率.2、等可能【详解】略3、1【分析】根据必然事件的定义即可知,在一定条件下,一定会发生的事件称为必然事件,必然事件的概率为1.【详解】三角形的任意两边之和大于第三边,事件“三角形的任意两边之和大于第三边”是必然事件,1.【点睛】本题考查了必然事件的概率,掌握必然事件的定义是解题的关键.4、0.2【分析】首先确定在图中B区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向B区域的概率.【详解】解:∵一个圆形转盘按1:2:3:4的比例分成A、B、C、D四个扇形区域,∴圆被等分成10份,其中B区域占2份,∴落在B区域的概率==0.2;故答案为:0.2.【点睛】此题考查利用概率公式计算,正确理解圆形份数及B区域所占份数与圆形份数之间的关系是解题的关键.5、0.6【分析】根据概率计算公式计算即可.【详解】恰好是白球的概率是=0.6,故答案为:0.6.【点睛】本题考查了简单地概率计算,熟练掌握概率的计算公式是解题的关键.6、011010【详解】略7、大【分析】分别求得找到男生和找到女生的概率即可比较出可能性的大小.【详解】解:∵初一(2)班共有学生44人,其中男生有30人,女生14人,∴找到男生的概率为:=,找到女生的概率为:=而∴找到男生的可能性大,故答案为:大【点睛】本题考查的是简单随机事件的概率,掌握“利用概率公式求解简单随机事件的概率”是解本题的关键,随机事件的概率等于符合条件的情况数除以所有的情况数.8、【分析】直接利用概率公式求出P1,P2的值,进而得出答案.【详解】解:由题意可得出:一枚质地均匀的骰子的六个面上分别刻有1~6的点数,偶数有2、4、6共3个,奇数有1、3、5共3个,抛到偶数的概率为P1=;抛到奇数的概率为P2=,故P1与P2的大小关系是:P1=P2.故答案为:P1=P2.【点睛】本题主要考查了概率公式的应用,熟练利用概率公式求出是解题关键.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9、【分析】直接根据概率公式计算即可.【详解】解:抽中甲的可能性为,故答案为:.【点睛】本题考查了概率公式的简单应用,熟知:概率=所求情况数与总情况数之比是关键.10、【分析】根据等可能事件的概率公式,直接求解即可.【详解】解:∵一共有5个数字,偶数有2个,∴从袋子中随机摸出一张卡片,其数字为偶数的概率是=2÷5=,故答案是:.【点睛】本题主要考查等可能事件的概率,掌握概率公式,是解题的关键.三、解答题1、(1);(2);(3)【分析】(1)根据概率公式直接求解即可;(2)用奇数的个数除以总数的个数即可得出答案;(3)先找出点数大于2且小于5的个数,再除以总个数即可得出答案.【详解】解:掷一枚质地均匀的骰子时,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.(1)点数为2有1种可能,因此P(点数为2).(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数).(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5).【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.2、(1);(2)【分析】(1)根据题意得:奇数为1、3、5,有3个,然后根据概率公式即可求解;(2)根据题意得:能被3整除的数为3、6,有2个,然后根据概率公式即可求解.【详解】解:(1)∵奇数为1、3、5,有3个,∴P(指针指向奇数区域);(2)∵能被3整除的数为3、6,有2个,∴P(指针指向的数字能被3整除).【点睛】本题主要考查了求概率,熟练掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率是解题的关键.3、(1)200;(2)420人;(3)【分析】(1)由参加唱歌的人数和所占百分比求出这次抽样调查的总人数,即可解决问题;(2)由该校学生人数乘以参加舞蹈的学生所占的比例即可;(3)画树状图,共有12种等可能的结果,恰为一男一女的结果有8种,再由概率公式求解即可.【详解】解:(1)这次抽样调查的总人数为:36÷18%=200(人),故答案为:200;(2)样本中参加舞蹈的学生人数为:200−36−80−24=60(人),∴1400×=420(人),即估计该校选择参加舞蹈有420人;(3)画树状图如图:共有12种等可能的结果,恰为一男一女的结果有8种,∴恰为一男一女的概率为.【点睛】本题考查的是用列表法或画树状图法求概率的知识以及条形统计图和扇形统计图.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.4、公平.理由见解析.【分析】抛掷一枚硬币,可出现正面朝上或反面朝上,两种结果发生的可能性相同,从而可得答案.【详解】解:公平.因为抛掷一枚硬币,正面向上的概率和反面向上的概率各为,所以采用这种方法确定哪一队首先开球是公平的.【点睛】本题考查的简单随机事件的概率,如果一个事件的发生有n种可能,而且这些

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论