




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》专项练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,B,C,E,F四点在一条直线上,下列条件能判定△ABC与△DEF全等的是(
)A.AB∥DE,∠A=∠D,BE=CF B.AB∥DE,AB=DE,AC=DFC.AB∥DE,AC=DF,BE=CF D.AB∥DE,AC∥DF,∠A=∠D2、已知锐角,如图,(1)在射线上取点,,分别以点为圆心,,长为半径作弧,交射线于点,;(2)连接,交于点.根据以上作图过程及所作图形,下列结论错误的是(
)A. B.C.若,则 D.点在的平分线上3、如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是()A.SAS B.ASA C.AAS D.HL4、如图,在△ABC和△DEF中,已知AB=DE,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三个均可以5、如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为(
)A. B. C.10 D.8第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,点B,F,C,E在一条直线上,,,请添加一个条件,使≌,这个添加的条件可以是______(只需写一个,不添加辅助线).2、如图,在中,、的平分线相交于点I,且,若,则的度数为______度.3、如图,△ABC≌△DBE,△ABC的周长为30,AB=9,BE=8,则AC的长是__.4、如图,将一张直角三角形纸片对折,使点B、C重合,折痕为DE,连接DC,若AC=6cm,∠ACB=90°,∠B=30°,则△ADC的周长是_____cm.5、如图,在△ABC中,BD=CD,BE交AD于F,AE=EF,若BE=7CE,,则BF=_______.三、解答题(5小题,每小题10分,共计50分)1、方格纸上有2个图形,你能沿着格线把每一个图形都分成完全相同的两个部分吗?请画出分割线.2、如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.3、已知:如图,点A,D,C,B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:(1)△AEC≌△BFD(2)DE=CF4、△ABC、△DPC都是等边三角形.(1)如图1,求证:AP=BD;(2)如图2,点P在△ABC内,M为AC的中点,连PM、PA、PB,若PA⊥PM,且PB=2PM.①求证:BP⊥BD;②判断PC与PA的数量关系并证明.5、如图1,点P、Q分别是边长为4cm的等边三角形ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P,Q运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P、Q运动几秒时,是直角三角形?(4)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则变化吗?若变化说明理由,若不变,则求出它的度数。-参考答案-一、单选题1、A【解析】【分析】根据全等三角形的判定条件逐一判断即可.【详解】解:A、∵,∴,∵,∴,即在和中∵∴,故A符合题意;B、∵,∴,再由,不可以利用SSA证明两个三角形全等,故B不符合题意;C、∵,∴,再由,不可以利用SSA证明两个三角形全等,故C不符合题意;D、∵,∴,,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;故选A.【考点】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.2、C【解析】【分析】根据题意可知,即可推断结论A;先证明,再证明即可证明结论B;连接OP,可证明可证明结论D;由此可知答案.【详解】解:由题意可知,,,故选项A正确,不符合题意;在和中,,,在和中,,,,故选项B正确,不符合题意;连接OP,,,在和中,,,,点在的平分线上,故选项D正确,不符合题意;若,,则,而根据题意不能证明,故不能证明,故选项C错误,符合题意;故选:C.【考点】本题考查角平分线的判定,全等三角形的判定与性质,明确以某一半径画弧时,准确找到相等的线段是解题的关键.3、D【解析】【详解】∵在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),故选D.4、B【解析】【分析】根据三角形全等的判定中的SAS,即两边夹角.已知两条边相等,只需要它们的夹角相等即可.【详解】要使两三角形全等,已知AB=DE,BC=EF,要用SAS判断,还差夹角,即∠B=∠E.故选:B.【考点】本题考查了三角形全等的判定方法.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主.5、A【解析】【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【详解】解:如图,连结AE,设AC交EF于O,依题意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因为EF为线段AC的中垂线,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考点】本题考查了全等三角形的判定、勾股定理,熟练掌握是解题的关键.二、填空题1、(还可以添加∠A=∠D或∠ACB=∠EFD或AC∥DF,答案不唯一)【解析】【分析】根据等式的性质可得BC=EF,再添加AB=DE,可利用SAS判定△ABC≌△DEF.【详解】添加的条件是,∵,∴,即.∵在中中,.故答案为:.(还可以添加或或,答案不唯一)【考点】本题主要考查了三角形全等的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、70【解析】【分析】在BC上取点D,令,利用SAS定理证明得到,,再利用得到,所以,再由角平分线可得,利用以及AI平分可知.【详解】解:在BC上取点D,令,连接DI,BI,如下图所示:∵CI平分∴在和中∴∴,∵∴,即:∵AI平分、CI平分,∴BI平分,∴∵∴故答案为:70.【考点】本题考查角平分线,全等三角形的判定及性质,三角形的一个外角等于与它不相邻的两个内角的和,利用,在BC上取点D等于AC,作出辅助线是解本题的关键点,也是难点.3、13【解析】【分析】根据全等三角形的性质求出BC,根据三角形的周长公式计算,得到答案.【详解】解:∵△ABC≌△DBE,BE=8,∴BC=BE=8,∵△ABC的周长为30,∴AB+AC+BC=30,∴AC=30﹣AB﹣BC=13,故答案为:13.【考点】此题主要考查全等三角形的性质,解题的关键是熟知全等三角形的性质.4、18【解析】【分析】【详解】解:根据折叠前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周长是18cm.故答案为8.5、或【解析】【分析】延长AD至G,使DG=AD,连接BG,可证明,则BG=AC,,根据AE=EF,得到,可证出,即得出AC=BF,从而得出BF的长.【详解】解:如图,延长AD至G,使DG=AD,连接BG,在和中,∴∴BG=AC,,又∵AE=EF,∴,又∵,∴,∴,∴BG=BF,∴AC=BF,又∵BE=7CE,AE=,∴BF+EF=,即BF+=,解得BF=.故答案为:【考点】本题考查了全等三角形的判定和性质,证明线段相等,一般转化为证明三角形全等,正确地作出辅助线构造全等三角形是解题的关键.三、解答题1、见解析【解析】【分析】观察第一个图,图中共有20个小方格,要分成完全相同两部分,则每个有10个小格,则可按如图所示,沿A→B→C→D分割;第二个图同理沿E→F→G→H→P→Q分割即可.【详解】解:如图所示,第一个图,图中共有20个小方格,要分成完全相同两部分,则每个有10个小格,则可按如图所示,沿A→B→C→D分割;第二个图同理沿E→F→G→H→P→Q分割即可.将分割出的两个图形,逆时针旋转90度,再通过平移,两部分能够完全重合,所以分割出的两部分完全相同.【考点】本题考查图形全等,掌握全等图形的定义是解题的关键.2、证明见解析.【解析】【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以∠ACB=∠DBC,故OB=OC.【详解】证明:在Rt△ABC和Rt△DCB中,∴Rt△ABC≌Rt△DCB(HL),∴∠OBC=∠OCB,∴BO=CO.【考点】此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.3、(1)见解析(2)见解析【解析】【分析】(1)由线段的和差可得AC=BD,继而利用“SSS”即可求证结论;(2)由(1)可知∠A=∠B,继而利用“SAS”求证△AED≌△BFC,根据全等三角形的性质即可求证结论.(1)证明:∵AD=BC,∴AD+DC=BC+DC,即AC=BD,在△AEC和△BFD中,
∴△AEC≌△BFD(SSS),(2)由(1)可知△AEC≌△BFD,∴∠A=∠B,在△AED和△BFC中,,∴△AED≌△BFC(SAS),∴DE=CF【考点】本题考查了全等三角形的判定及其性质,解题的关键是能够根据已知条件和隐藏条件正确选择全等三角形的判定方法.4、(1)证明过程见解析;(2)①证明过程见解析;②PC=2PA,理由见解析.【解析】【分析】(1)证明△BCD≌△ACP(SAS),可得结论;(2)①如图2中,延长PM到K,使得MK=PM,连接CK.证明△AMP≌△CMK(SAS),推出MP=MK,AP=CK,∠APM=∠K=90°,再证明△PDB≌△PCK(SSS),可得结论;②结论:PC=2PA.想办法证明∠DPB=30°,可得结论.(1)证明:如图1中,∵△ABC,△CDP都是等边三角形,∴CB=CA,CD=CP,∠ACB=∠DCP=60°,∴∠BCD=∠ACP,在△BCD和△ACP中,,∴△BCD≌△ACP(SAS),∴BD=AP;(2)证明:如图2中,延长PM到K,使得MK=PM,连接CK.∵AP⊥PM,∴∠APM=90°,在△AMP和△CMK中,,∴△AMP≌△CMK(SAS),∴MP=MK,AP=CK,∠APM=∠K=90°,同法可证△BCD≌△ACP,∴BD=PA=CK,∵PB=2PM,∴PB=PK,∵PD=PC,∴△PDB≌△PCK(SSS),∴∠PBD=∠K=90°,∴PB⊥BD.②解:结论:PC=2PA.∵△PDB≌△PCK,∴∠DPB=∠CPK,设∠DPB=∠CPK=x,则∠BDP=90°-x,∵∠APC=∠CDB,∴90°+x=60°+90°-x,∴x=30°,∴∠DPB=30°,∵∠PBD=90°,∴PD=2BD,∵PC=PD,BD=PA,∴PC=2PA.【考点】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30°角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题.5、(1)见解析;(2)∠CMQ=60°,不变;(3)当第秒或第秒时,△PBQ为直角三角形;(4)∠CMQ=120°,不变.【解析】【分析】(1)利用SAS可证全等;(2)先证△ABQ≌△CAP,得出∠BAQ=∠ACP,通过角度转化,可得出∠CMQ=60°;(3)存在2种情况,一种是∠PQB=90°,另一种是∠BPQ=90°,分别根据直角三角形边直角的关系可求得t的值;(4)先证△PBC≌△ACQ,从而得出∠BPC=∠MQC,然后利用角度转化可得出∠CMQ=120°.【详解】(1)证明:在等边三角形ABC中,AB=AC,∠B=∠CAP=60°又由题中“点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.”可知:AP=BQ∴≌;(2)∠CMQ=60°不变∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;(3)设时间为t,则AP=BQ=t,PB=4-t,①当∠PQB=90°时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防设施操作员国考题库及完整答案详解【夺冠系列】
- 计算机国考题库含答案详解【夺分金卷】
- 江苏国考行测题库【培优】附答案详解
- 国考行测题库比例及答案详解【有一套】
- 消防设施操作员国考题库附答案详解(培优b卷)
- 消防维保国考题库带答案详解(综合题)
- 消防设施操作员国考题库附答案详解(轻巧夺冠)
- 最接近国考的行测题库含答案详解(夺分金卷)
- 贵州行测国考题库(预热题)附答案详解
- 辽宁省国考行测题库及完整答案详解【各地真题】
- 海上风电基础知识培训课件
- 2025年医疗器械临床试验质量管理规范培训考试试题及答案
- 国际道路应急预案
- 人防指挥所信息化建设方案
- 生死疲劳阅读报告课件
- 胸椎管狭窄症诊疗规范
- 2025年国家管网集团高校毕业生招聘945人正式启动笔试参考题库附带答案详解
- 夜班护士安全培训内容课件
- 新版中华民族共同体概论课件第九讲混一南北与中华民族大统合 (元朝时期)-2025年版
- 2025至2030中国城际出行市场发展前景与趋势预测分析报告
- 征拆工作课件
评论
0/150
提交评论