




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省福泉市中考数学真题分类(数据分析)汇编专项攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列说法正确的是(
)A.为了解近十年全国初中生的肥胖人数变化趋势,采用扇形统计图最合适B.“煮熟的鸭子飞了”是一个随机事件C.一组数据的中位数可能有两个D.为了解我省中学生的睡眠情况,应采用抽样调查的方式2、在2019年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、平均数依次是(
)A.48,48,48 B.48,47.5,47.5C.48,48,48.5 D.48,47.5,48.53、中考体育测试,某组10名男生引体向上个数分别为:6,8,8,7,7,8,9,7,8,9.则这组数据的中位数和众数分别是(
)A.7.5,7 B.7.5,8 C.8,7 D.8,84、教练准备从甲、乙、丙、丁四个足球队员中选出一个队员去罚点球,四个队员平时训练罚点球的平均命中率x及方差s2如表所示:甲乙丙丁x70%80%80%70%s211.211.8如果要选出一个成绩较好且状态较稳定的队员去执行罚球,那么应选的队员是()A.甲 B.乙 C.丙 D.丁5、甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2 B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2 D.甲<乙,s甲2<s乙26、两组数据:3,a,b,5与a,4,的平均数都是3.若将这两组数据合并为一组新数据,则这组新数据的众数为(
)A.2 B.3 C.4 D.57、某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如表所示:读书时间(小时)7891011学生人数691096关于该班学生一周读书时间的数据有下列说法:①一周读书时间数据的中位数是9小时;②一周读书时间数据的众数是10小时;③一周读书时间数据的平均数是9小时;④一周读书时间不少于9小时的人数占抽查学生的50%.其中说法正确的序号是(
)A.①②③ B.①②④ C.②③④ D.①③8、下列说法正确的是(
)A.“每天太阳从西边出来”是随机事件;B.为了解全国中学生视力和用眼卫生情况,适宜采用全面调查;C.甲、乙两人射中环数的方差分别是,,说明甲的射击成绩更稳定;D.数据4,3,5,5,2的中位数是4.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、在植树节当天,某班的四个绿化小组植树的棵数如下:10,8,9,9,则这组数据的平均数是___________.2、某校举办广播体操比赛,评分项目包括精神面貌,整齐程度,动作规范这三项,总评成绩按以上三项得分的比例计算,已知八()班在比赛中三项得分依次是分,分,分,则八()班这次比赛的总成绩为__________分.3、某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价好一般拥挤严重拥挤根据以上信息,以下四个判断中,正确的是____(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.4、若、、的平均数为,则、、的平均数为______.5、已知一组数据10、3、a、5的平均数为5,那么a为_____.6、一组数据5,8,x,10,4的平均数为2x,则x=_____,这组数据的方差为_____.7、甲乙两人进行射击比赛,每人射击5次,所得平均环数相等,其中甲所得环数的方差为2.1,乙的方差是1,那么成绩较稳定的是_________(填“甲”或“乙”).三、解答题(7小题,每小题10分,共计70分)1、某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,:4棵;:5棵;:6棵;:7棵.将各类的人数绘制成扇形统计图和条形统计图(如图所示),经确认扇形统计图是正确的,而条形统计图尚有一处错误.回答下列问题:(1)写出条形统计图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是;第二步:在该问题中,,,,,;第三步:(棵).①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估这260名学生共植树多少棵.2、小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:.小云所住小区5月1日至30日的厨余垃圾分出量统计图:.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为(结果取整数)(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为5月11日至20日的厨余垃圾分出量的方差为,5月21日至30日的厨余垃圾分出量的方差为.直接写出的大小关系.3、如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.4、践行文化自信,让中华文化走向世界.习近平总书记指出,“提高国家文化软实力,要努力展示中华文化独特魅力”,要“把跨越时空、超越国度、富有永恒魅力、具有当代价值的文化精神弘扬起来,把继承传统优秀文化又弘扬时代精神、立足本国又面向世界的当代中国文化创新成果传播出去”.遵义市甲、乙两校的学生人数基本相同,为了解这两所学校学生的中华文化知识水平,在同一次知识竞赛中,从两校各随机抽取了30名学生的竞赛成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分(如图).甲校成绩:93
82
76
77
76
89
89
89
83
94
84
76
69
83
92
87
88
89
84
92
87
89
79
54
88
98
90
87
68
76乙校成绩:85
61
79
91
84
92
92
84
63
90
89
71
92
87
92
73
76
92
84
57
87
89
88
94
83
85
80
94
72
90平均数中位数众数甲校83.6乙校83.28692(1)请根据乙校的数据补全条形统计图;(2)两组样本数据的平均数、中位数、众数如表所示,请补全表格;(3)请判断哪所学校学生的中华文化知识水平更好一些,并根据(2)中的数据说明理由.5、运用语音识别输入软件可以提高文字输入的速度.为了解A,B两种语音识别输入软件的准确性,小秦同学随机选取了20段话,其中每段话都含100个文字(不计标点符号).在保持相同语速的条件下,他用标准普通话朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.(1)收集数据两种软件每次识别正确的字数记录如下:A9898929292929289898584848383797978786958B9996969696969694928988858078727271655855(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如下表所示:平均数众数中位数方差A84.784.588.91B83.7184.01(4)得出结论根据以上信息,判断种语音识别输入软件的准确性较好,理由如下:(至少从两个不同的角度说明判断的合理性).6、小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.7、甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15乙厂:6,6,8,8,8,9,10,12,14,15丙厂:4,4,4,6,7,9,13,15,16,16请回答下列问题.(1)分别求出以上三组数据的平均数、众数、中位数.平均数众数中位数甲厂乙厂丙厂(2)这三个厂家的推销广告分别利用了哪一种表示集中趋势的特征数?(3)如果你是位顾客,宜选购哪家工厂的产品?为什么?-参考答案-一、单选题1、D【解析】【分析】根据统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查逐项分析判断即可求解.【详解】解:A.为了解近十年全国初中生的肥胖人数变化趋势,采用折线统计图最合适,故该选项不正确,不符合题意;B.“煮熟的鸭子飞了”是一个不可能事件,故该选项不正确,不符合题意;C.一组数据的中位数只有1个,故该选项不正确,不符合题意;D.为了解我省中学生的睡眠情况,应采用抽样调查的方式,故该选项正确,符合题意;故选:D.【考点】本题考查了统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查,掌握相关定义以及统计图知识是解题的关键.必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系.2、A【解析】【分析】根据众数、中位数的定义和平均数公式分别进行解答即可.【详解】解:这组数据中48出现的次数最多,则这组数据的众数是48;把这组数据按从小到大排列,最中间两个数的平均数是(48+48)÷2=48,则中位数是48;这组数据的平均数是(47×2+48×3+50)÷6=48,故选:A.【考点】本题考查了众数、中位数和平均数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n个数据,x1,x2,…xn的平均数为.3、D【解析】【分析】分别计算该组数据的众数、中位数后找到正确答案即可.【详解】解:根据题意,这组数据按从小到大排列为:6,7,7,7,8,8,8,8,9,9;∴中位数为:8;众数为8;故选:D【考点】本题考查了中位数及众数,在解决此类题目的时候一定要细心,特别是求中位数的时候,首先排序,然后确定数据总个数.4、C【解析】【分析】先比较平均数得到乙和丙成绩较好,然后比较方差得到丙的状态稳定,于是可决定选队员丙去参赛.【详解】解:∵乙、丙的平均数比甲、丁大,∴应从乙和丙中选,∵丙的方差比乙的小,∴丙的成绩较好且状态稳定,应选的队员是丙;故选:C.【考点】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5、A【解析】【分析】分别计算平均数和方差后比较即可得到答案.【详解】解:(1)(8×4+9×2+10×4)=9;=(8×3+9×4+10×3)=9;s甲2=[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴,s甲2>s乙2,故选:A.【考点】本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、B【解析】【分析】首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求众数即可.【详解】∵两组数据:3,a,b,5与a,4,的平均数都是3,∴,解得a=3,b=1,则新数据3,3,1,5,3,4,2,众数为3,故选B.【考点】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.7、D【解析】【分析】根据统计表给出的数据求出一个班级的学生总数,再根据中位数、众数、平均数以及百分比的定义分别进行解答即可.【详解】解:这个班级的学生总数是:6+10+9+8+7=40(人),则该班学生一周读书时间数据的中位数是:(9+9)÷2=9(小时),说法①正确;众数是:9小时,说法②错误;平均数是:(7×6+8×10+9×9+10×8+11×7)=9(小时),说法③正确;一周读书时间不少于9小时的人数占抽查学生的百分比为:×100%=62.5%,说法④错误.故选:D.【考点】此题考查了平均数、众数和中位数,熟练掌握定义是解题的关键.8、D【解析】【分析】根据随机事件的定义,普查的定义,方差的大小,中位数的定义依次判断.【详解】解:A、“每天太阳从西边出来”是不可能事件,不符合题意;B、为了解全国中学生视力和用眼卫生情况,适宜采用全面调查抽样调查,故不符合题意;C、甲、乙两人射中环数的方差分别是,,说明乙的射击成绩更稳定,故不符合题意;D、数据4,3,5,5,2的中位数是4,故符合题意;故选:D.【考点】此题考查了随机事件的定义,普查的定义,方差的大小,中位数的定义,理解各定义是解题的关键.二、填空题1、【解析】【分析】根据求平均数的公式求解即可.【详解】解:由题意可知:平均数,故答案为:【考点】本题考查平均数,解题的关键是掌握求一组数据的平均数的方法:一般地,对于n个数,我们把叫做这n个数的算术平均数,简称平均数.2、【解析】【分析】根据题意及加权平均数直接列式计算即可.【详解】解:由题意得:(分).故答案为.【考点】本题主要考查加权平均数,熟练掌握加权平均数的算法是解题的关键.3、①④【解析】【分析】根据统计图与统计表,结合相关统计或概率知识逐个选项分析即可.【详解】解:①根据题意每日接待游客人数为拥挤,为严重拥挤,由统计图可知,游玩环境评价为“拥挤或严重拥挤”,1日至5日有1天,25日日有3天,共4天,故①正确;②本题中位数是指将30天的游客人数从小到大排列,第15与第16位的和除以2,根据统计图可知的有16天,从而中位数位于范围内,故②错误;③从统计图可以看出,接近10的有6天,大于10而小于15的有2天,15以上的有2天,10上下的估算为10,则,可以考虑为给每个0至5的补上3.25,则大部分大于5,而0至5范围内有6天接近5,故平均数一定大于5,故③错误;④由题意可知“这两天游玩环境评价均为好”的可能性为:,故④正确.故答案为:①④.【考点】本题考查了中位数、平均数及可能性等概率与统计知识,掌握相关基础概念并结合统计图表进行分析是解题的关键.4、9【解析】【分析】根据、、的平均数为7可得,再列出计算、、的平均数的代数式,整理即可得出答案.【详解】解:∵、、的平均数为7,∴,∴,故答案为:9【考点】本题考查计算平均数.掌握平均数的计算公式是解题关键.5、2【解析】【分析】根据平均数的计算方法,列出等式然后计算即可.【详解】解:依题意有,解得.故答案为:2.【考点】本题考查了算术平均数,正确理解算术平均数的意义是解题的关键.6、
3
6.8##【解析】【分析】本题可用求平均数的公式解出x的值,在运用方差的公式解出方差.【详解】解:∵数据5,8,x,10,4的平均数是2x,∴5+8+x+10+4=5×2x,解得x=3,=2×3=6,s2=[(5﹣6)2+(8﹣6)2+(3﹣6)2+(10﹣6)2+(4﹣6)2]=×(1+4+9+16+4)=6.8.故答案为3,6.8.【考点】本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键7、乙【解析】【分析】根据方差的意义进行判断即可,若两组数据的平均数相同,则方差小的更稳定.【详解】平均环数相等,其中甲所得环数的方差为2.1,乙的方差是1,成绩较稳定的是乙故答案为:乙【考点】本题考查了方差的意义,理解方差的意义是解题的关键.三、解答题1、(1)类型错误;(2)众数为5棵,中位数为5棵;(3)①第二步;②这260名学生共植树1378棵.【解析】【分析】(1)条形统计图中D的人数错误,利用总人数乘对应的百分比求解即可,应为20×10%;(2)根据中位数、众数的定义以及条形统计图及扇形统计图所给的数据,即可求出答案;(3)①小宇的分析是从第二步开始出现错误的;②根据平均数的计算公式先求出正确的平均数,再乘以260即可得到结果.【详解】解:(1)类型错误,理由如下:(名),而条形统计图中,类型的人数是3名,故类型错误;(2)众数为5棵,中位数为5棵.(3)①第二步.②(棵).(棵).故估计这260名学生共植树1378棵.故答案为(1)类型错误;(2)众数为5棵,中位数为5棵;(3)①第二步;②这260名学生共植树1378棵.【考点】本题考查条形统计图和扇形统计图,用到的知识点是平均数、中位数、众数以及用样本估计总体,弄清题意是解题的关键.2、(1)173;(2)2.9倍;(3)【解析】【分析】(1)利用加权平均数的计算公式进行计算,即可得到答案;(2)利用5月份的平均数除以4月份的平均数,即可得到答案;(3)直接利用点状图和方差的意义进行分析,即可得到答案.【详解】解:(1)平均数:(千克);故答案为:173;(2)倍;故答案为:2.9;(3)方差反应数据的稳定程度,即从点状图中表现数据的离散程度,所以从图中可知:;【考点】本题考查了方差的意义,平均数,以及数据的分析处理,解题的关键是熟练掌握题意,正确的分析数据的联系.3、(1)这5天的日最低气温的波动较大;(2)①25日、26日、27日、28日、29日的天气现象依次是大雨、中雨、晴、晴、多云,日温差依次是,可以看出雨天的日温差较小.②25日、26日、27日的天气现象依次是大雨、中雨、晴,空气质量依次是良、优、优,说明下雨后空气质量改善了.【解析】【分析】(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:(可简单记忆为“方差等于差方的平均数”).【详解】解:(1)这5天的日最高气温和日最低气温的平均数分别是.方差分别是,.由可知,这5天的日最低气温的波动较大.(2)本题答案不唯一,例如,①25日、26日、27日、28日、29日的天气现象依次是大雨、中雨、晴、晴、多云,日温差依次是,可以看出雨天的日温差较小.②25日、26日、27日的天气现象依次是大雨、中雨、晴,空气质量依次是良、优、优,说明下雨后空气质量改善了.【考点】本题考查了方差,正确理解方差的意义是解题的关键.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4、(1)见解析(2)中位数:87;众数:89(3)甲校的平均分高于乙校,说明总成绩甲校比乙校好【解析】【分析】(1)根据表格中的数据可以得到乙校70-79的有5人,在条形统计图上补充完整即可;(2)先将甲校的成绩从小到大排序,即可得到答案;(3)答案不唯一,理由需要包含数据提供的信息.(1)由表格可得,乙校70-79的有30-10-12-2-1=5人,补全条形统计图,如下图:(2)甲校成绩按照从小到大排序为:54、68、69、76、76、76、76、77、79、82、83、83、84、84、87、87、87、88、88、89、89、89、89、89、90、92、92、93、94、98这组数据的中位数为,众数为89,补全表格,如下:平均数中位数众数甲校83.68789乙校83.28692(3)①甲校的平均分高于乙校,说明总成绩甲校比乙校好;②中位数甲校高于乙校,说明甲校一半以上的学生成绩较好(答案不唯一,只要言之有理即可).
【考点】本题考查条形统计图、中位数、众数、平均数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5、(1)见解析;(2)见解析;(3)92,88.5;(4)B,理由:B种软件识别字数的中位数比A软件的高,B种软件识别字数的众数比A软件的高【解析】【分析】(1)绘制成数据收集表;(2)根据表格中的数据,补全频数分布直方图即可;(3)根据中位数、众数的意义求解即可;(4)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年福建省泉州文旅集团招聘3人模拟试卷含答案详解
- 安全培训表彰课件
- Brand KPIs for clean beauty Herbivore Botanicals in the United States-外文版培训课件(2025.9)
- 安全培训落实制度方案模板课件
- 2025年兖矿资本管理有限公司社会招聘(3人)考前自测高频考点模拟试题及答案详解参考
- 涂料知识培训直播内容文案课件
- 2025江苏徐州市教育局直属事业单位选调工作人员3人考前自测高频考点模拟试题及完整答案详解一套
- 2025广西河池市金城江区人民法院招聘3人考前自测高频考点模拟试题及答案详解(易错题)
- 2025辽宁沈阳盛京资产管理集团有限公司所属子公司沈阳大天地运营管理有限公司招聘9人考前自测高频考点模拟试题参考答案详解
- 安全培训考点申请课件
- 经济统计学课件
- 马工程经济法学教学
- “情景教学法”是小学英语教学的最有效方法
- 特种设备生产和使用单位日、周、月管理制度及填写表格(模板)
- 工程伦理-核工程的伦理问题
- 压矿资源调查报告
- 防范医疗纠纷法律课件-图文(精)
- 公司葡萄图模板
- 2023安徽省成人高考《英语》(高升专)真题库及答案(单选题型)
- GB/T 8918-2006重要用途钢丝绳
- 【公开课课件】3.3.1乙醇课件
评论
0/150
提交评论