




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江七台河勃利县7年级数学下册第五章生活中的轴对称综合测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A. B. C. D.2、第24届冬奥会将于2022年2月4日至20日在北京市和张家口市联合举行.下面是从历届冬奥会的会徽中选取的部分图形,其中是轴对称图形的是()A. B. C. D.3、下列图形是轴对称图形的是()A. B. C. D.4、下列说法正确的是()A.轴对称图形是由两个图形组成的 B.等边三角形有三条对称轴C.两个等面积的图形一定轴对称 D.直角三角形一定是轴对称图形5、下面是福州市几所中学的校标,其中是轴对称图形的是()A. B. C. D.6、如图,四边形ABCD是轴对称图形,直线AC是它的对称轴,若∠BAC=85°,∠B=25°,则∠BCD的大小为()A.150° B.140° C.130° D.120°7、下列图形是四家电信公司的标志,其中是轴对称图形的是()A. B.C. D.8、下面四个图形是轴对称图形的是()A. B. C. D.9、如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN.则∠NEM的度数为()A.105o B.C. D.不能确定10、下列图形中,是轴对称图形的是()A. B.C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,直角三角形纸片的两直角边分别为6和8,现将△ABC折叠,使点A与点B重合,折痕为DE,则△CBE的周长是___.2、如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的一点,写请出一个正确的结论__.3、如果一个图形沿一条直线________,直线两旁的部分能够________,这个图形就叫做____;这条直线就是它的________.4、如图,把四边形ABCD纸条沿MN对折,若AD∥BC,∠α=52°,则∠AMN=_______.5、平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是______.6、如图,在中,,点A关于的对称点是,点B关于的对称点是,点C关于的对称点是,若,,则的面积是___________.7、如图,ABC与关于直线l对称,则∠B的度数为__________.8、如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形.在图中最多能画出___个格点三角形与△ABC成轴对称.9、如图,将长方形沿折叠,点落在边上的点处,点落在点处,若,则等于_______(用含的式子表示).10、如图①,在长方形ABCD中,E点在AD上,并且∠AEB=60°,分别以BE、CE为折痕进行折叠并压平,如图②,若图②中∠AED=10°,则∠DEC的度数为___度.三、解答题(6小题,每小题10分,共计60分)1、如图是一个8×10的网格,每个小正方形的顶点叫格点,每个小正方形的边长均为1,△ABC的顶点均在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1.(2)求出△OCC1的面积.2、已知,在如图所示的网格中建立平面直角坐标系后,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(2,4).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)借助图中的网格,请只用直尺(不含刻度)完成以下要求:(友情提醒:请别忘了标注字母!)①在第一象限内找一点P,使得P到AB、AC的距离相等,且PA=PB;②在x轴上找一点Q,使得△QAB的周长最小,则Q点的坐标(_____,_____).3、如图,在数轴上A点表示数a,B点表示数b,C点表示数c,已知数b是最小的正整数,且a、c满足.(1)a=_____,b=______,c=______;(2)若将数轴折叠,使得点A与点C重合,则点B与数______表示的点重合;(3)在(1)的条件下,数轴上的A,B,M表示的数为a,b,y,是否存在点M,使得点M到点A,点B的距离之和为6?若存在,请求出y的值;若不存在,请说明理由.(4)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,求AB、AC、BC的长(用含t的式子表示).4、如图,在△ABC中,∠ACB的平分线CD与外角∠EAC的平分线AF所在的直线交于点D.(1)求证:∠B=2∠D;(2)作点D关于AC所在直线的对称点D′,连接AD′,CD′.①当AD′⊥AD时,求∠BAC的度数;②试判断∠DAD′与∠BAC的数量关系,并说明理由.5、如图,已知线段a,求作以a为底、以为高的等腰三角形,这个等腰三角形有什么特征?6、ABCD是长方形纸片的四个顶点,点E、F、H分别边AD、BC、AD上的三点,连接EF、FH.(1)将长方形纸片的ABCD按如图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′,点B′在FC′上,则∠EFH的度数为;(2)将长方形纸片的ABCD按如图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D'(B′、C′的位置如图所示),若∠B'FC′=16°,求∠EFH的度数;(3)将长方形纸片的ABCD按如图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′,D′(B′、C′的位置如图所示).若∠EFH=n°,则∠B′FC′的度数为.-参考答案-一、单选题1、A【分析】利用轴对称图形的概念进行解答即可.【详解】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.【点睛】本题主要是考查了轴对称图形的概念,判别轴对称图形的关键是找对称轴.2、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项符合题意;故选B.【点睛】本题主要考查了轴对称图形的定义,熟知定义是解题的关键.3、C【分析】根据轴对称图形的概念解答即可.【详解】A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.是轴对称图形,故本选项正确;D.不是轴对称图形,故本选项错误.故选C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、B【分析】根据轴对称图形的定义逐一进行判定解答.【详解】解:A、轴对称图形可以是1个图形,不符合题意;B、等边三角形有三条对称轴,即三边垂直平分线,符合题意;C、两个等面积的图形不一定轴对称,不符合题意;D、直角三角形不一定是轴对称图形,不符合题意.故选:B.【点睛】本题考查轴对称图形的定义与性质,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.5、A【分析】结合轴对称图形的概念进行求解即可.【详解】A、是轴对称图形,本选项符合题意;B、不是轴对称图形,本选项不合题意;C、不是轴对称图形,本选项不合题意;D、不是轴对称图形,本选项不合题意.故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、B【分析】根据三角形内角和的性质可求得,再根据对称的性质可得,即可求解.【详解】解:根据三角形内角和的性质可求得由轴对称图形的性质可得,∴故选:B【点睛】此题考查了三角形内角和的性质,轴对称图形的性质,解题的关键是掌握并利用相关基本性质进行求解.7、C【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.8、B【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据此概念进行分析.【详解】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:B.【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9、B【分析】由折叠的性质可得:再结合邻补角的含义可得答案.【详解】解:由折叠的性质可得:故选B【点睛】本题考查的是轴对称的性质,角平分线的含义,邻补角的含义,利用轴对称的性质证明是解本题的关键.10、A【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可.【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A.【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键.二、填空题1、14【分析】根据图形翻折变换的性质得出AE=BE,进而可得出△CBE的周长=AC+BC.【详解】解:∵△BDE是△ADE翻折而成,∴AE=BE,∴△CBE的周长=BC+BE+CE=BC+AE+CE=BC+AC,∵角三角形纸片的两直角边长分别为6和8,∴△CBE的周长是14.故答案为:14.【点睛】本题考查的是图形翻折变换的性质,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键.2、AP=BP(答案不唯一)【分析】根据轴对称图形的性质,即可求解.【详解】解:∵直线MN是四边形AMBN的对称轴,∴AP=BP.故答案为:AP=BP(答案不唯一)【点睛】本题主要考查了轴对称图形的性质,熟练掌握轴对称图形的关键是找到对称轴,图形关于对称轴折叠前后对应线段相等,对应角相等是解题的关键.3、折叠互相重合轴对称图形对称轴【分析】根据轴对称图形的概念直接填空即可.【详解】解:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.故答案为:折叠,互相重合,轴对称图形,对称轴.【点睛】本题考查了轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴,解题关键是熟记定义.4、【分析】如图,设点对应点为,则根据折叠的性质求得,根据平行的性质可得,进而求得.【详解】如图,设点对应点为,根据折叠的性质可得,,∠α=52°,,,,.故答案为:.【点睛】本题考查了折叠的性质,平行线的性质,掌握以上性质是解题的关键.5、【分析】根据关于x轴的对称点的坐标特征求解即可;【详解】解:根据关于x轴的对称点的特征,横坐标不变,纵坐标变为相反数可得:点关于轴对称的点的坐标是;故答案是.【点睛】本题主要考查了平面直角坐标系中点的对称性,掌握关于x轴对称的点的特征,准确计算是解题的关键.6、18【分析】连接B′B,并延长交C′A′于点D,交AC于点E,再根据对称的性质可知C′B=BC,A′B=BA,AC//A′C′,AC=A′C′,且BB′⊥AC,B′E=BE,得B′D=3BE,然后利用三角形面积公式可得到S△A′B′C′=3S△ABC.【详解】解:连接B′B,并延长交C′A′于点D,交AC于点E,如图,∵点B关于AC的对称点是B',∴EB′=EB,BB′⊥AC,∵点C关于AB的对称点是C',∴BC=BC′,∵点A关于BC的对称点是A',∴AB=A′B,而∠ABC=∠A′BC′,∴△ABC≌△A′BC′(SAS),∴∠C=∠A′C′B,AC=A′C′,∴AC∥A′C′,∴DE⊥A′C′,而△ABC≌△A′BC′,∴BD=BE,∴B′D=3BE,∴S△A′B′C′=A′C′×B′E=3××BD×AC=3S△ABC.∵S△ABC=∴S△A′B′C′=故答案为18【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.7、100°【分析】根据轴对称的性质可得≌,再根据和的度数即可求出的度数.【详解】解:∵与关于直线l对称∴≌∴,∴故答案为:【点睛】本题主要考查了轴对称的性质以及全等的性质,熟练掌握轴对称的性质和全等的性质是解答此题的关键.8、6【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解【详解】解:如图,以AB的中垂线为对称轴如图1,以BC边所在直线为对称轴如图2,以AB边所在三网格中间网格的垂直平分线为对称轴如图3,以BC边中垂线为对称轴,以3×3网格的对角线所在直线为对称轴如图5,图6,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.9、【分析】根据折叠得出∠DEF=∠HEF,∠EFG=∠EFC,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,∠BFE=∠DEF,代入即可求出∠EFG,进而求出∠BFG.【详解】解:∵将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,∴∠DEF=∠HEF,∠EFG=∠EFC,∵∠AEH=m°,∴∠DEF=∠HEF=(180°-∠AEH)=(180°-m°),∵四边形ABCD是长方形,∴AD∥BC,EH∥FG,∴∠DEF+∠EFC=180°,∠BFE=∠DEF=(180°-m°),∴∠EFG=∠EFC=180°-(180°-m°)=90°+m°,∴∠BFG=∠EFG-∠BFE=90°+m°-(180°-m°)=m°,故答案为:m.【点睛】本题考查了平行线的性质,折叠的性质等知识点,根据平行线的性质求出∠BFE=∠DEF和∠DEF+∠EFC=180°是解此题的关键.10、35【分析】由折叠可得BE平分,CE平分,再利用角的和差得到=180°-120°+10°=70°,进而可得答案.【详解】解:由折叠可得BE平分,CE平分,∵∠AEB=60°,∴=2∠AEB=120°,∵,∴∴∠CED=.故答案为:35.【点睛】本题考查角的和差关系,轴对称的性质,根据折叠的性质得到BE平分,CE平分是解本题关键.三、解答题1、(1)见解析;(2)6.【分析】(1)利用轴对称的性质画出A、B、C关于直线OM的对称点A1、B1、C1即可;(2)利用三角形的面积公式计算即可.【详解】解:(1)如图,△A1B1C1为所作;(2)△OCC1的面积4×3=6.【点睛】本题考查了作图−轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始.2、(1)见详解;(2)①见详解;②2,0.【分析】(1)根据题意画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始,连接这些对称点,就得到原图形的轴对称图形;(2)①由题意作∠BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;②由题意作点B关于x轴对称的点B',连接AB',交x轴于Q,则点Q即为所求.根据直线AB'的解析式即可得出点Q的坐标.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)①如图所示,作∠BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;②如图所示,作点B关于x轴对称的点B',连接AB',交x轴于Q,则点Q即为所求,∵A(1,1),B'(4,-2),∴可设直线AB'为y=kx+b,则,解得:,∴y=-x+2,当y=0时,-x+2=0,解得x=2,此时点Q的坐标为(2,0).故答案为:2,0.【点睛】本题主要考查利用轴对称进行作图,解决问题的关键是掌握角平分线的性质,中垂线的性质以及待定系数法求一次函数解析式,解题时注意两点之间,线段最短.3、(1)-2,1,7;(2)4;(3)存在这样的点M,对应的y=2.5或y=-3.5;(4)3t+3,5t+9,2t+6.【分析】(1)根据非负数的性质得出,解方程可求,根据数b是最小的正整数,可得b=1即可;(2)先求出折点表示的是,然后点B到折点的距离,利用有理数加法即可出点B对称点;(3)由题意知AB=3,点M在AB之间,AM+BM=3<6,分两种情况讨论M在AB之外的情况第一种情况,当M在A点左侧时,由MA+MB=MA+MA+AB=6,第二种情况,当M在B点右侧时由MA+MB=MB+MB+AB=6,解方程即可;(4)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可.【详解】解:(1)∵,且,∴,解得,∵数b是最小的正整数,∴b=1,∴,故答案为:-2,1,7;(2)将数轴折叠,使得点A与点C重合,AC中点D表示的数为,点B表示1,BD=2.5-1=1.5,∴点B对应的数是,2.5+1.5=4,故答案为:4;(3)由题意知AB=3,M在AB之间,AM+BM=3<6,分两种情况讨论M在AB之外的情况第一种情况,当M在A点左侧时由MA+MB=MA+MA+AB=6,得MA=1.5∴y<-2,-2-y=1.5∴y=-3.5;第二种情况,当M在B点右侧时由MA+MB=MB+MB+AB=6,得MB=1.5∴y>1,y-1=1,5∴y=2.5;故存在这样的点M,对应的y=2.5或y=-3.5.(4)点A以每秒1个单位长度的速度向左运动,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,t秒钟后,A点表示-2-t,B点表示1+2t,C点表示7+4t∴;;;【点睛】本题考查了非负数和性质,一元一次方程的应用、数轴及两点间的距离,折叠性质,用代数式标数距离,解题的关键是利用数轴的特点能求出两点间的距离.4、(1)见解析;(2)①90°;②∠BAC+∠DAD′=180°,理由解析.【分析】(1)根据角平分线的定义,可得,,再由三角形的外角性质,即可求证;(2)①由对称的性质可知∠DAC=∠D′AC,根据垂直的定义,可得∠DAD′=90°,从而得到,进而得到∠FAE=∠CAF=45°,即可求解;②设∠DAD′=α,同①可得,,从而得到.进而得到∠BAC=180°-α,即可求解.【详解】(1)证明:∵CD平分∠ACB,∴.∵AF是外角∠EAC的平分线,∴.又∵∠CAF=∠D+∠ACD,∠CAE=∠B+∠ACB,∴∠D=∠CAF-∠ACD==.∴∠B=2∠D;(2)由对称的性质可知∠DAC=∠D′AC,①当AD′⊥AD时,∠DAD′=90°,∴.∴∠CAF=180°-∠DAC=45°.∴∠FAE=∠CAF=45°.∴∠BAC=180°-∠FAE-∠CAF=90°;②∠BAC+∠DAD′=180°,理由如下:设∠DAD′=α,同①可得,,∴.∴∠CAE=2∠CA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人商铺租赁合同15篇
- 专技人员公共知识培训课件
- 企业劳动合同
- 二手挖掘机买卖合同集合15篇
- 人行法律知识专题培训课件
- 2025标准写字楼租赁合同模板下载
- 2025金属冲压设备制造企业劳务派遣合作协议
- 中国银行吉安市峡江县2025秋招笔试计算机基础专练及答案
- 邮储银行长春市朝阳区2025秋招笔试金融学专练及答案
- 中国银行濮阳市清丰县2025秋招笔试计算机基础专练及答案
- 淮北矿业安全管理办法
- ECMO护理进修汇报
- 建筑施工职业健康与安全防护指南
- 跨境电商股权分配协议范文
- 2025年深圳中考化学试卷真题(含答案)
- 三甲医院影像科管理制度
- T/CCAS 015-2020水泥助磨剂应用技术规范
- 江苏省南京市2024-2025学年高二物理上学期10月月考试题
- GB/T 320-2025工业用合成盐酸
- 2024年公路水运工程助理试验检测师《水运结构与地基》考前必刷必练题库500题(含真题、必会题)
- 2025年社工招聘考试试题及答案
评论
0/150
提交评论