难点详解人教版8年级数学上册《全等三角形》综合测试试题(含详细解析)_第1页
难点详解人教版8年级数学上册《全等三角形》综合测试试题(含详细解析)_第2页
难点详解人教版8年级数学上册《全等三角形》综合测试试题(含详细解析)_第3页
难点详解人教版8年级数学上册《全等三角形》综合测试试题(含详细解析)_第4页
难点详解人教版8年级数学上册《全等三角形》综合测试试题(含详细解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《全等三角形》综合测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,点O是△ABC中∠BCA,∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离是(

)A.1 B.2C.3 D.42、图,,,则的对应边是(

)A. B. C. D.3、如图,已知,则图中全等三角形的总对数是A.3 B.4 C.5 D.64、如图,在中,,观察图中尺规作图的痕迹,可知的度数为()A. B. C. D.5、如图,已知图中的两个三角形全等,则∠α的度数是()A.72° B.60° C.58° D.50°第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,,若,则到的距离为_________.2、△ABC中,∠BAC:∠ACB:∠ABC=4:3:2,且△ABC≌△DEF,则∠DEF=______度.3、如图,与的顶点A、B、D在同一直线上,,,,延长分别交、于点F、G.若,,则______.4、已知:如图,是上一点,平分,,若,则________.(用的代数式表示)5、在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是_____.三、解答题(5小题,每小题10分,共计50分)1、已知△ABC与ΔADE均为等腰直角三角形,且∠BAC=∠DAE=90°,点D在直线BC上.(1)如图1,当点D在CB延长线上时,求证:BE⊥CD;(2)如图2,当D点不在直线BC上时,BE、CD相交于M,①直接写出∠CME的度数;②求证:MA平分∠CME2、如图,在五边形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分别是∠ABC,∠BCD的角平分线.(1)求证:△ABE≌△DCE;(2)当∠A=80°,∠ABC=140°,时,∠AED=_________度(直接填空).3、如图,D是△ABC的边AC上一点,点E在AC的延长线上,ED=AC,过点E作EF∥AB,并截取EF=AB,连接DF.求证:DF=CB.4、如图,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E.求证:BD=2CE.5、某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】(1)如图1,AD是的中线,延长AD至点E,使,连接BE,证明:.【理解与应用】(2)如图2,EP是的中线,若,,设,则x的取值范围是________.(3)如图3,AD是的中线,E、F分别在AB、AC上,且,求证:.-参考答案-一、单选题1、C【解析】【分析】过点O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得:OE=OF=OD然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=AB·OE+BC·OD+AC·OF=×OD×(AB+BC+AC)=×OD×8=12OD=3故选:C【考点】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.2、C【解析】【分析】根据全等三角形中对应角所对的边是对应边,可知BC=DA.【详解】解:∵ABC≌△CDA,∠BAC=∠DCA,∴∠BAC与∠DCA是对应角,∴BC与DA是对应边(对应角对的边是对应边).故选C.【考点】本题考查了全等三角形中对应边的找法,解题的关键是掌握书写的特点.3、D【解析】【分析】根据全等三角形的判定方法进行判断.全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.【详解】解:∵AB∥DC,AD∥BC,∴∠DAC=∠BCA,∠CDB=∠ABD,∠DCA=∠BAC,∠ADB=∠CBD,又∵BE=DF,∴由∠ADB=∠CBD,DB=BD,∠ABD=∠CDB,可得△ABD≌△CDB;由∠DAC=∠BCA,AC=CA,∠DCA=∠BAC,可得△ACD≌△CAB;∴AO=CO,DO=BO,由∠DAO=∠BCO,AO=CO,∠AOD=∠COB,可得△AOD≌△COB;由∠CDB=∠ABD,∠COD=∠AOB,CO=AO,可得△COD≌△AOB;由∠DCA=∠BAC,∠COF=∠AOE,CO=AO,可得△AOE≌△COF;由∠CDB=∠ABD,∠DOF=∠BOE,DO=BO,可得△DOF≌△BOE;故选D.【考点】本题主要考查了全等三角形的判定与性质的运用,解题时注意:若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,或者是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.4、C【解析】【分析】利用等腰三角形的性质和基本作图得到,则平分,利用和三角形内角和计算出,从而得到的度数.【详解】由作法得,∵,∴平分,,∵,∴.故选C.【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.5、D【解析】【分析】根据∠α是a、c边的夹角,50°的角是a、c边的夹角,然后根据两个三角形全等写出即可.【详解】解:∵∠α是a、c边的夹角,50°的角是a、c边的夹角,又∵两个三角形全等,∴∠α的度数是50°.故选:D.【考点】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键.全等三角形的对应角相等,对应边相等.对应边的对角是对应角,对应角的对边是对应边.二、填空题1、4【解析】【分析】过P点作PE⊥OB于E,根据角平分线的性质定理可得PE=PD,即可求解.【详解】解:如图,过P点作PE⊥OB于E,∵,PE⊥OB,∴PE=PD=4,即P到OB的距离是4,故答案为:4.【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质定理是解题的关键.2、40【解析】【分析】设∠BAC为4x,则∠ACB为3x,∠ABC为2x,由∠BAC+∠ACB+∠ABC=180°得4x+3x+2x=180.【详解】解:设∠BAC为4x,则∠ACB为3x,∠ABC为2x∵∠BAC+∠ACB+∠ABC=180°∴4x+3x+2x=180,解得x=20∴∠ABC=2x=40°∵△ABC≌△DEF∴∠DEF=∠ABC=40°.故答案为40【考点】考核知识点:全等三角形性质.理解全等三角形性质是关键.3、或110度【解析】【分析】先证明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性质求解.【详解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案为:110°.【考点】本题考查了平行线的性质,全等三角形的判定与性质,以及三角形外角的性质,熟练掌握三角形的外角等于不相邻的两个内角和是解答本题的关键.4、【解析】【分析】过点D分别作DE⊥AB,DF⊥AC,根据角平分线的性质得到DE=DF,根据表示出DE的长度,进而得到DF的长度,然后即可求出的值.【详解】如图,过点D分别作DE⊥AB,DF⊥AC,∵平分,∴DE=DF,∵,∴,∴∴,故答案为:.【考点】此题考查了角平分线的性质定理,三角形面积的表示方法,解题的关键是根据题意正确作出辅助线.5、4:3【解析】【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【详解】∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.三、解答题1、(1)见解析(2)①90°;②见解析【解析】【分析】(1)先推出∠CAD=∠BAE,∠C=∠ABC=45°,然后证明△CAD≌△BAE得到∠ABE=∠C=45°,则∠EBC=∠ABE+∠ABC=90°,即EB⊥CD;(2)①同理可证△BAE≌△CAD,得到∠ABE=∠ACD,再由∠EMC=∠EBC+∠BCD,得到∠EMC=∠ABE+∠ABC+∠ACD+∠BCD=90°;②如图,过点A作AG⊥BE于G,AF⊥CD于F,由△BAE≌△CAD,得到AG=AF,证明Rt△AGM≌Rt△AFM得到∠AMG=∠AMF,即AM平分∠EMC.(1)解:∵△ABC与ΔADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AE=AD,∠DAE+∠DAB=∠CAB+∠DAB,∴∠CAD=∠BAE,∠C=∠ABC=45°,∴△CAD≌△BAE(SAS),∴∠ABE=∠C=45°,∴∠EBC=∠ABE+∠ABC=90°,即EB⊥CD;(2)解:①同理可证△BAE≌△CAD,∠ABC=∠ACB=90°,∴∠ABE=∠ACD,∵∠EMC=∠EBC+∠BCD,∴∠EMC=∠ABE+∠ABC+∠ACD+∠BCD=90°;②如图,过点A作AG⊥BE于G,AF⊥CD于F,∵△BAE≌△CAD,∴AG=AF,在Rt△AGM和Rt△AFM中,,∴Rt△AGM≌Rt△AFM(HL),∴∠AMG=∠AMF,即AM平分∠EMC.【考点】本题主要考查了全等三角形的性质与判定,三角形外角的性质,熟知全等三角形的性质与判定条件是解题的关键.2、(1)见解析;(2)100【解析】【分析】(1)根据∠ABC=∠BCD,BE,CE分别是∠ABC,∠BCD的角平分线,可得∠ABE=∠DCE,∠CBE=∠BCE,推出BE=CE,由此利用SAS证明△ABE≌△DCE;(2)根据三角形全等的性质求出∠D的度数,利用公式求出五边形的内角和,即可得到答案.(1)证明:∵∠ABC=∠BCD,BE,CE分别是∠ABC,∠BCD的角平分线,∴∠ABE=∠CBE=∠ABC,∠BCE=∠DCE=∠BCD,∴∠ABE=∠DCE,∠CBE=∠BCE,∴BE=CE,又∵AB=CD,∴△ABE≌△DCE(SAS);(2)∵△ABE≌△DCE,∴∠D=∠A=80°,∵五边形ABCDE的内角和为,∴∠AED=,故答案为:100.【考点】此题考查了全等三角形的判定及性质,多边形内角和计算,正确掌握全等三角形的判定及性质定理是解题的关键.3、证明过程见解析【解析】【分析】根据EF∥AB,得到,再根据已知条件证明,即可得解;【详解】∵EF∥AB,∴,在和中,,∴,∴;【考点】本题主要考查了全等三角形的判定与性质,准确分析判断是解题的关键.4、证明见解析.【解析】【分析】延长CE、BA交于F,根据角边角定理,证明△BEF≌△BEC,进而得到CF=2CE的关系.再证明∠ACF=∠1,根据角边角定理证明△ACF≌△ABD,得到BD=CF,至此问题得解.【详解】证明:分别延长BA,CE交于点F.∵BE⊥CE,∴∠BEF=∠BEC=90°.又∵∠1=∠2,BE=BE,∴△BEF≌△BEC(ASA),∴CE=FE=CF.∵∠1+∠F=90°,∠ACF+∠F=90°,∴∠1=∠ACF.又∵AB=AC,∠BAD=∠CAF=90°,∴△ABD≌△ACF(ASA),∴BD=CF,∴BD=2CE【考点】本题考查了全等三角形的判定与性质.解题的关键是恰当添加辅助线,构造全等三角形,将所求问题转化为全等三角形内边间的关系来解决.5、(1)见解析;(2);(3)见解析【解析】【分析】(1)根据全等三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论