难点解析-人教版8年级数学上册《轴对称》专项攻克试题(详解)_第1页
难点解析-人教版8年级数学上册《轴对称》专项攻克试题(详解)_第2页
难点解析-人教版8年级数学上册《轴对称》专项攻克试题(详解)_第3页
难点解析-人教版8年级数学上册《轴对称》专项攻克试题(详解)_第4页
难点解析-人教版8年级数学上册《轴对称》专项攻克试题(详解)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《轴对称》专项攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、将三角形纸片()按如图所示的方式折叠,使点C落在边上的点D,折痕为.已知,若以点B、D、F为顶点的三角形与相似,那么的长度是(

)A.2 B.或2 C. D.或22、下列图形中,是轴对称图形的是(

)A. B. C. D.3、如图是A,B,C三岛的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三岛组成一个()A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等边三角形4、如图,按以下步骤进行尺规作图:(1)以点为圆心,任意长为半径作弧,交的两边,分别于,两点;(2)分别以点,为圆心,大于的长为半径作弧,两弧在内交于点;(3)作射线,连接,,.下列结论错误的是(

)A.垂直平分 B. C. D.5、对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90º.则小意同学判断的依据是(

)A.等角对等边 B.线段中垂线上的点到线段两段距离相等C.垂线段最短 D.等腰三角形“三线合一”第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,BD垂直平分线段AC,AE⊥BC,垂足为E,交BD于P点,AE=7cm,AP=4cm,则P点到直线AB的距离是_____.2、如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=,AE=,则用含、的代数式表示△ABC的周长为__________.3、一辆汽车的牌照在车下方水坑中的像是,则这辆汽车的牌照号码应为_____.4、在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则的值是_____.5、如图,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若△ABC的面积为2cm2,则△BPC的面积为___cm2.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,点,分别是、边上的点,,,与相交于点,求证:是等腰三角形.2、在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC,BC于点M、N.(1)如图1,若∠BAC=112°,求∠EAN的度数;(2)如图2,若∠BAC=82°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),直接写出用α表示∠EAN大小的代数式.3、如图,在中,,.(1)在线段上找到一个点,使得.(尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,连接,求证:是等边三角形.4、如图,中,,点在边上,.求证.5、如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C均在网格上).(1)作△ABC关于直线MN的轴对称图形△A'B'C';(2)在MN上画出点P,使得PA+PC最小;(3)求出△ABC的面积.-参考答案-一、单选题1、B【解析】【分析】分两种情况:若或若,再根据相似三角形的性质解题【详解】∵沿折叠后点C和点D重合,∴,设,则,以点B、D、F为顶点的三角形与相似,分两种情况:①若,则,即,解得;②若,则,即,解得.综上,的长为或2,故选:B.【考点】本题考查相似三角形的性质,是重要考点,掌握相关知识是解题关键.2、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得.【详解】解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3、A【解析】【分析】先根据方位角的定义分别可求出,再根据角的和差、平行线的性质可得,,从而可得,然后根据三角形的内角和定理可得,最后根据等腰直角三角形的定义即可得.【详解】由方位角的定义得:由题意得:由三角形的内角和定理得:是等腰直角三角形即A,B,C三岛组成一个等腰直角三角形故选:A.【考点】本题考查了方位角的定义、平行线的性质、三角形的内角和定理、等腰直角三角形的定义等知识点,掌握理解方位角的概念是解题关键.4、D【解析】【分析】利用全等三角形的性质以及线段的垂直平分线的判定解决问题即可.【详解】解:由作图可知,在△OCD和△OCE中,,∴△OCD≌△OCE(SSS),∴∠DCO=∠ECO,∠1=∠2,∵OD=OE,CD=CE,∴OC垂直平分线段DE,故A,B,C正确,没有条件能证明CE=OE,故选:D.【考点】本题考查了作图-基本作图,全等三角形的判定和性质,线段的垂直平分线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.5、B【解析】【分析】由垂直平分线的判定定理,即可得到答案.【详解】解:根据题意,∵CD=CE,OE=OD,∴AO是线段DE的垂直平分线,∴∠AOB=90°;则小意同学判断的依据是:线段中垂线上的点到线段两段距离相等;故选:B.【考点】本题考查了垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行判断.二、填空题1、3cm.【解析】【分析】由已知条件,根据垂直平分线的性质得出AB=BC,可得到∠ABD=∠DBC,再利用角平分线上的点到角两边的距离相等得到答案.【详解】解:过点P作PM⊥AB与点M,∵BD垂直平分线段AC,∴AB=CB,∴∠ABD=∠DBC,即BD为角平分线,∵AE=7cm,AP=4cm,∴AE﹣AP=3cm,又∵PM⊥AB,PE⊥CB,∴PM=PE=3(cm).故答案为:3cm.【考点】本题综合考查了线段垂直平分线的性质及角平分线的性质,线段垂直平分线上的点到线段两端的距离相等,角平分线上的点到角两边的距离相等,灵活应用线段垂直平分线及角平分线的性质是解题的关键.2、2a+3b【解析】【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长为:AB+AC+BC=2a+3b.【详解】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB−∠ECA=36°,∴∠BEC=180°−∠ABC−∠ECB=72°,∴CE=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b故答案为2a+3b.【考点】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.3、H•8379【解析】【分析】易得所求的牌照与看到的牌照关于水平的一条直线成轴对称,作出相应图形即可求解.【详解】解:如图所示:该车牌照号码为:H•8379.故答案为:H•8379.【考点】本题考查轴对称的应用,熟练掌握轴对称的性质是解题关键.4、1【解析】【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】解:在直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数,∵点M(a,b)与点N(3,﹣1)关于x轴对称,∴a=3,b=1,∴=1,故答案为:1.【考点】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解题的关键.5、1【解析】【分析】根据等腰三角形三线合一的性质即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案.【详解】∵BD=BA,BP是∠ABC的角平分线,∴,∴和是等底同高的三角形,和是等底同高的三角形,∴,.∵,,∴.故答案为:1.【考点】本题考查等腰三角形的性质.掌握等腰三角形“三线合一”是解答本题的关键.三、解答题1、见解析【解析】【分析】先证明,得到,,进而得到,故可求解.【详解】证明:在和中∴∴∴又∵∴即∴是等腰三角形.【考点】此题主要考查等腰三角形的判定,解题的关键是熟知全等三角形的判定与性质.2、(1)∠EAN=44°;(2)∠EAN=16°;(3)当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.【解析】【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的内角和定理求出∠B+∠C,再根据∠EAN=∠BAC﹣(∠BAE+∠CAN)代入数据进行计算即可得解;(2)同(1)的思路,最后根据∠EAN=∠BAE+∠CAN﹣∠BAC代入数据进行计算即可得解;(3)根据前两问的求解方法,分0°<α<90°与180°>α>90°两种情况解答.【详解】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=68°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=112°﹣68°=44°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=98°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=98°﹣82°=16°;(3)当0°<α<90°时,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠在△ABC中,∠∴∠当180°>α>90°时,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠在△ABC中,∠所以,当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.【考点】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,整体思想的利用是解题的关键.3、(1)见解析;(2)见解析【解析】【分析】(1)作线段AC的垂直平分线即可;(2)根据线段垂直平分线的性质可得DA=DC,根据等边对等角可得∠CAD=∠C,进而可得∠ADB=∠B=∠DAB=60°,然后可得答案.(1)解:如图所示:(2)∵∠BAC=90°,∠C=30°∴∠B=60°,又∵点D在AC的垂直平分线上,∴DA=DC,∴∠CAD=∠C=30°,∴∠DAB=60°,∴∠ADB=∠B=∠DAB=60°,即△ABD是等边三角形.【考点】此题主要考查了基本作图,以及线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.4、证明见解析.【解析】【分析】先根据等腰三角形的性质可得,再根据线段的和差可得,然后根据三角形的判定与性质即可得证.【详解】,,,,即,在和中,,,,即.【考点】本题考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论