难点解析-吉林省延吉市中考数学真题分类(实数)汇编同步测试练习题(含答案解析)_第1页
难点解析-吉林省延吉市中考数学真题分类(实数)汇编同步测试练习题(含答案解析)_第2页
难点解析-吉林省延吉市中考数学真题分类(实数)汇编同步测试练习题(含答案解析)_第3页
难点解析-吉林省延吉市中考数学真题分类(实数)汇编同步测试练习题(含答案解析)_第4页
难点解析-吉林省延吉市中考数学真题分类(实数)汇编同步测试练习题(含答案解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省延吉市中考数学真题分类(实数)汇编同步测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列说法:①数轴上的任意一点都表示一个有理数;②若、互为相反数,则;③多项式是四次三项式;④几个有理数相乘,如果负因数有奇数个,则积为负数,其中正确的有(

)A.个 B.个 C.个 D.个2、下列计算正确的是(

)A. B.C. D.3、下列说法正确的是A.的平方根是 B.的算术平方根是4C.的平方根是 D.0的平方根和算术平方根都是04、若,,,则a,b,c的大小关系为(

)A. B. C. D.5、若一个正数的两个平方根分别为2-a与3a+6,则这个正数为(

)A.2 B.-4 C.6 D.366、下列计算正确的是()A.=2 B.=±2 C.=2 D.=±27、下列各组数中,互为相反数的一组是()A.﹣2与 B.﹣2与 C.﹣2与﹣ D.|﹣2|与28、有下列说法:①无理数是无限小数,无限小数是无理数;②无理数包括正无理数、和负无理数;③带根号的数都是无理数;④无理数是含有根号且被开方数不能被开尽的数;⑤是一个分数.其中正确的有(

)A.个 B.个 C.个 D.个第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、计算:=_______.2、当时,化简_________________.3、如图,已知数轴上的点A、B、C、D分别表示数、1、2、3,则表示数的点P应落在线段_________上.(从“”,“”,“”,“”中选择)4、已知数a、b、c在数粒上的位置如图所示,化简的结果是______.5、若实数,满足,则的值是______.6、比较大小,(填>或<号)_____;_________7、计算:=_____.三、解答题(7小题,每小题10分,共计70分)1、计算:(1);(2).2、计算

3、计算:4、定义:对于一个两位数x,如果x满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S(x).例如,a=13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S(13)=4.(1)下列两位数:20,29,77中,“相异数”为,计算:S(43)=;(2)若一个“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10,求相异数y;(3)小慧同学发现若S(x)=5,则“相异数”x的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例.5、计算:(1);(2).6、如果一个正数m的两个平方根分别是2a-3和a-9,求2m-2的值.7、计算(1)(2)-参考答案-一、单选题1、C【解析】【分析】数轴上的点可以表示无理数,所以①错误;若a,b互为相反数则a+b=0,则②正确;是常数项,所以③错误;根据有理数的乘法法则可判断④正确.【详解】数轴上的点既可以表示有理数,也可以表示无理数,所以①错误;若a,b互为相反数则a+b=0,则②正确;是常数项,是三次三项式,故③错误;根据有理数的乘法法则可判断④正确.故正确的有②④,共2个故选C【考点】本题考查了实数与数轴、相反数、多项式、有理数的乘法,熟记概念是解题的关键.2、B【解析】【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】解:A、与不是同类二次根式,不能合并,此选项错误;B、===,此选项正确;C、=(5-)÷=5-,此选项错误;D、=,此选项错误;故选B.【考点】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.3、D【解析】【分析】根据一个正数有两个平方根,且这两个平方根互为相反数及平方根的定义即可判断各选项.【详解】解:A、的平方根为±,故本选项错误;B、-16没有算术平方根,故本选项错误;C、(-4)2=16,16的平方根是±4,故本选项错误;D、0的平方根和算术平方根都是0,故本选项正确.故选D.【考点】本题考查了平方根和算术平方根的定义,一个正数有两个平方根,其中正的平方根称为算术平方根,负数没有平方根,0的平方根和算术平方根都是0.4、C【解析】【分析】根据无理数的估算进行大小比较.【详解】解:∵,又∵,∴故选:C.【考点】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键.5、D【解析】【分析】根据平方根的定义可得一个关于的一元一次方程,解方程求出的值,再计算有理数的乘方即可得.【详解】解:由题意得:,解得,则这个正数为,故选:D.【考点】本题考查了平方根、一元一次方程的应用,熟练掌握平方根的定义是解题关键.6、A【解析】【分析】根据算数平方根的定义可判断:若一个正数的平方等于a,则这个正数就是a的算数平方根.【详解】解:A、,选项正确,符合题意;B、,选项错误,不符合题意;C、,选项错误,不符合题意;D、,选项错误,不符合题意;故选:A.【考点】本题考查了算术平方根的定义,解题的关键是注意区别算数平方根和平方根.7、A【解析】【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项.【详解】解:A、=2,﹣2与2互为相反数,故选项正确,符合题意;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误,不符合题意;C、﹣2与不互为相反数,故选项错误,不符合题意;D、|﹣2|=2,2与2不互为相反数,故选项错误,不符合题意.故选:A.【考点】本题考查了算术平方根,立方根,相反数的概念,解题的关键是掌握相关概念并对数据进行化简.8、A【解析】【分析】根据无理数、分数的概念判断.【详解】解:无限不循环小数是无理数,错误.是有理数,错误.是有理数,错误.也是无理数,不含根号,错误.是一个无理数,不是分数,错误.故选:.【考点】本题考查实数的概念,掌握无理数是无限不循环小数是求解本题的关键.二、填空题1、3【解析】【分析】先计算负整数指数幂和算术平方根,再计算加减即可求解.【详解】原式=5﹣2=3,故答案为:3.【考点】此题考查了实数的运算,负整数指数幂,熟练掌握运算法则是解本题的关键.2、【解析】【分析】先根据二次根式的定义和除法的性质可得,再根据二次根式的性质化简,然后计算二次根式的除法即可得.【详解】由二次根式的定义得:,,,又除法运算的除数不能为0,,,则故答案为:.【考点】本题考查了二次根式的定义与除法运算,熟练掌握二次根式的运算法则是解题关键.3、【解析】【分析】用有理数逼近无理数,求无理数的近似值.【详解】解:∵,∴,∴,故表示数的点P应落在线段上.故答案为:.【考点】此题主要考查了估算无理数的大小估算及应用,正确掌握估算及应用是解此题关键.4、0【解析】【分析】首先根据数轴可以得到c<a<0<b,然后则根据绝对值的性质,以及算术平方根的性质即可化简.【详解】解:根据数轴可以得到:c<a<0<b,则c-b<0,a+c<0,则原式==-a+(a+c)+(b-c)-b=-a+a+c+b-c-b=0.故答案是:0.【考点】本题考查了二次根式的性质、整式的加减、以及绝对值的性质,解答此题,要弄清5、3【解析】【分析】根据二次根式有意义的条件得出x-5≥0且5-x≥0,求出x=5,再求出y,最后代入求出即可.【详解】解:要使有意义,必须x-5≥0且5-x≥0,解得:x=5,把x=5代入得:y=4,所以,故答案为:3.【考点】本题考查了二次根式有意义的条件和解不等式,能根据二次根式有意义的条件得出x-5≥0和5-x≥0是解此题的关键.6、

>

>【解析】【分析】根据二次根式比较大小的方法:作差法及平方法进行求解即可.【详解】解:,18>12,;,,;故答案为>;>.【考点】本题主要考查二次根式的大小比较,熟练掌握二次根式的大小比较的方法是解题的关键.7、【解析】【分析】根据二次根式乘法运算法则进行运算即可得出答案.【详解】解:==,故答案为:.【考点】本次考查二次根式乘法运算,熟练二次根式乘法运算法则即可.三、解答题1、(1)(2)【解析】【分析】(1)先把各二次根式化为最简二次根式得到,然后合并同类二次根式即可;(2)先把各二次根式化为最简二次根式和根据二次根式的乘除法运算得到,然后合并.(1)原式;(2)原式.【考点】本题考查二次根式的混合运算,解题的关键是掌握二次根式混合运算的相关法则.2、(1);(2)【解析】【分析】根据二次根式的性质和运算公式计算即可.【详解】原式;原式.【考点】本题考查了二次根式的混合运算,熟练掌握运算公式是解题的关键.3、【解析】【分析】直接化简二次根式,进而合并即可;【详解】==【考点】此题考查二次根式的混合运算,正确化简二次根式是解题关键.4、(1)29,7;(2)46;(3)正确,理由详见解析.【解析】【分析】(1)根据“相异数”的定义可知29是“相异数”,20,77不是“相异数”,利用定义进行计算即可,(2)根据“相异数”的定义,由S(y)=10,列方程求出“相异数y”的十位数字和个位数字,进而确定y;(3)设出“相异数”的十位、个位数字,根据“相异数”的定义,由S(x)=5,得出十位数字和个位数字之间的关系,进而得出结论.【详解】解:(1)根据“相异数”的定义可知29是“相异数”,20,77不是“相异数”S(43)=(43+34)÷11=7,故答案为:29,7;(2)由“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10得,10k+2(k﹣1)+20(k﹣1)+k=10×11,解得k=4,∴2(k﹣1)=2×3=6,∴相异数y是46;(3)正确;设“相异数”的十位数字为a,个位数字为b,则x=10a+b,由S(x)=5得,10a+b+10b+a=5×11,即:a+b=5,因此,判断正确.【考点】本题主要考查相异数,一元一次方程的应用,掌握相异数的定义及S(x)的求法是解题的关键.5、(1)(2)【解析】【分析】(1)首先化简二次根式,再合并同类二次根式即可求得结果;(2)首先根据完全平方公式和平方差公式进行运算,再进行实数的加减运算即可求得.(1)解:(2)解:【考点】本题考查了二次根式的混合运算,熟练掌握和运用二次根式混合运算的方法是解决本题的关键.6、48【解析】【分析】根据一个正数的两个平方根互为相反数求出a的值,利用平方根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论