




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西安交通大学第二附属中学南校区中考数学期末几何综合压轴题模拟汇编一、中考几何压轴题1.综合与实践动手实践:一次数学兴趣活动,张老师将等腰的直角顶点与正方形的顶点重合(),按如图(1)所示重叠在一起,使点在边上,连接.则可证:______,______三点共线;发现问题:(1)如图(2),已知正方形,为边上一动点,,交的延长线于,连结交于点.若,则______,______;尝试探究:(2)如图(3),在(1)的条件下若,求证:;拓展延伸:(3)如图(4),在(1)的条件下,当______时,为的6倍(直接写结果,不要求证明).2.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积之间的关系问题”进行了以下探究:类比探究:(1)如图2,在中,为斜边,分别以为直径,向外侧作半圆,则面积之间的关系式为_____________;推广验证:(2)如图3,在中,为斜边,分别以为边向外侧作,,满足,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用:(3)如图4,在五边形中,,点在上,,求五边形的面积.3.(1)问题探究:如图1,在正方形中,点、、分别是、、上的点,且,求证:;(2)类比应用:如图2,在矩形中,,,将矩形沿折叠使点落在点处,得到矩形.①若点为的中点,试探究与的数量关系;②拓展延伸:连,当时,,,求的长.4.(教材呈现)下面是华师版八年级下册教材第89页的部分内容.如图,G,H是平行四边形ABCD对角线AC上的两点,且AG=CH,E,F分别是边AB和CD的中点求证:四边形EHFG是平行四边形证明:连接EF交AC于点O∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又∵E,F分别是AB,CD的中点∴AE=CF又∵AB∥CD∴∠EAO=∠FCO又∵∠AOE=∠COF∴△AOE≌△COF请补全上述问题的证明过程.(探究)如图①,在△ABC中,E,O分别是边AB、AC的中点,D、F分别是线段AO、CO的中点,连结DE、EF,将△DEF绕点O旋转180°得到△DGF,若四边形DEFG的面积为8,则△ABC的面积为.(拓展)如图②,GH是正方形ABCD对角线AC上的两点,且AG=CH,GH=AB,E、F分别是AB和CD的中点.若正方形ABCD的面积为16,则四边形EHFG的面积为.5.(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.①求证:DQ=AE;②推断:的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若tan∠CGP=,GF=2,求CP的长.6.将抛物线y=ax2的图像(如图1)绕原点顺时针旋转90度后可得新的抛物线图像(如图2),记为C:y2=x.(概念与理解)将抛物线y1=4x2和y2=x2按上述方法操作后可得新的抛物线图像,记为:C1:_____________;C2:____________.(猜想与证明)在平面直角坐标系中,点M(x,0)在x轴正半轴上,过点M作平行于y轴的直线,分别交抛物线C1于点A、B,交抛物线C2于点C、D,如图3所示.(1)填空:当x=1时,=______;当x=2时,=_______;(2)猜想:对任意x(x>0)上述结论是否仍然成立?若成立,请证明你的猜想;若不成立,请说明理由.(探究与应用)①利用上面的结论,可得△AOB与△COD面积比为;②若△AOB和△COD中有一个是直角三角形时,求△COD与△AOB面积之差;(联想与拓展)若抛物线C3:y2=mx、C4:y2=nx(0<m<n),M(k,0)在x轴正半轴上,如图所示,过点M作平行于y轴的直线,分别交抛物线C3于点A、B,交抛物线C4于点C、D.过点A作x轴的平行线交抛物线C4于点E,过点D作x轴的平行线交抛物线C3于点F.对于x轴上任取一点P,均有△PAE与△PDF面积的比值1:3,请直接写出m和n之间满足的等量关系是______.7.在矩形ABCD中,(k为常数),点P是对角线BD上一动点(不与B,D重合),将射线PA绕点P逆时针旋转90°与射线CB交于点E,连接AE.(1)特例发现:如图1,当k=1时,将点P移动到对角线交点处,可发现点E与点B重合,则=,∠AEP=;当点P移动到其它位置时,∠AEP的大小(填“改变”或“不变”);(2)类比探究:如图2,若k≠1时,当k的值确定时,请探究∠AEP的大小是否会随着点P的移动而发生变化,并说明理由;(3)拓展应用:当k≠1时,如图2,连接PC,若PC⊥BD,,PC=2,求AP的长.8.在中,于点,点为射线上任一点(点除外)连接,将线段绕点顺时针方向旋转,,得到,连接.(1)(观察发现)如图1,当,且时,BP与的数量关系是___________,与的位置关系是___________.(2)(猜想证明)如图2,当,且时,(1)中的结论是否成立?若成立,请予以证明;若不成立,请说明理由.(请选择图2,图3中的一种情况予以证明或说理)(3)(拓展探究)在(2)的条件下,若,,请直接写出的长.9.在中,,点D、E分别是的中点,将绕点C按顺时针方向旋转一定的角度,连接.观察猜想(1)如图①,当时,填空:①______________;②直线所夹锐角为____________;类比探究(2)如图②,当时,试判断的值及直线所夹锐角的度数,并说明理由;拓展应用(3)在(2)的条件下,若,将绕着点C在平面内旋转,当点D落在射线AC上时,请直接写出的值.10.综合与实践数学活动课上,老师让同学们结合下述情境,提出一个数学问题:如图1,四边形ABCD是正方形,四边形BEDF是矩形.探究展示:“兴趣小组”提出的问题是:“如图2,连接CE.求证:AE⊥CE.”并展示了如下的证明方法:证明:如图3,分别连接AC,BD,EF,AF.设AC与BD相交于点O.∵四边形ABCD是正方形,∴OA=OC=AC,OB=OD=BD,且AC=BD.又∵四边形BEDF是矩形,∴EF经过点O,∴OE=OF=EF,且EF=BD.∴OE=OF,OA=OC.∴四边形AECF是平行四边形.(依据1)∵AC=BD,EF=BD,∴AC=EF.∴四边形AECF是矩形.(依据2)∴∠CEA=90°,即AE⊥CE.反思交流:(1)上述证明过程中“依据1”“依据2”分别是什么?拓展再探:(2)“创新小组”受到“兴趣小组”的启发,提出的问题是:“如图4,分别延长AE,FB交于点P,求证:EB=PB.”请你帮助他们写出该问题的证明过程.(3)“智慧小组”提出的问题是:若∠BAP=30°,AE=,求正方形ABCD的面积.请你解决“智慧小组”提出的问题.11.如图1,已知,,点D在上,连接并延长交于点F,(1)猜想:线段与的数量关系为_____;(2)探究:若将图1的绕点B顺时针方向旋转,当小于时,得到图2,连接并延长交于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中,过点E作,垂足为点G.当的大小发生变化,其它条件不变时,若,,直接写出的长.12.综合与实践.特例感知.两块三角板△ADB与△EFC全等,∠ADB=∠EFC=90°,∠B=45°,AB=6.将直角边AD和EF重合摆放.点P、Q分别为BE、AF的中点,连接PQ,如图1.则△APQ的形状为.操作探究(1)若将△EFC绕点C顺时针旋转45°,点P恰好落在AD上,BE与AC交于点G,连接PF,如图2.①FG:GA=;②PF与DC的位置关系为;③求PQ的长;开放拓展(2)若△EFC绕点C旋转一周,当AC⊥CF时,∠AEC为.13.综合与实践操作探究(1)如图1,将矩形折叠,使点与点重合,折痕为,与交于点.请回答下列问题:①与全等的三角形为______,与相似的三角形为______.并证明你的结论:(相似比不为1,只填一个即可):②若连接、,请判断四边形的形状:______.并证明你的结论;拓展延伸(2)如图2,矩形中,,,点、分別在、边上,且,将矩形折叠,使点与点重合,折痕为,与交于点,连接.①设,,则与的数量关系为______;②设,,请用含的式子表示:______;③的最小值为______.14.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.15.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2.点D、E均在边BC边上,且∠DAE=45°,若BD=1,求DE的长.16.(1)问题发现:如图1,在△ABC中和△DCE中,,,,点D是BC的垂线AF上任意一点.填空:①的值为;②∠ABE的度数为.(2)类比探究:如图2,在△ABC中和△DCE中,,,点D是BC的垂线AF上任意一点.请判断的值及∠ABE的度数,并说明理由;(3)拓展延伸:在(2)的条件下,若,,请直接写出BE的长.17.几何探究:(问题发现)(1)如图1所示,△ABC和△ADE是有公共顶点的等边三角形,BD、CE的关系是_______(选填“相等”或“不相等”);(请直接写出答案)(类比探究)(2)如图2所示,△ABC和△ADE是有公共顶点的含有角的直角三角形,(1)中的结论还成立吗?请说明理由;(拓展延伸)(3)如图3所示,△ADE和△ABC是有公共顶点且相似比为1:2的两个等腰直角三角形,将△ADE绕点A自由旋转,若,当B、D、E三点共线时,直接写出BD的长.18.(性质探究)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.(迁移应用)(3)记△DGO的面积为S1,△DBF的面积为S2,当时,求的值.(拓展延伸)(4)若DF交射线AB于点F,(性质探究)中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.19.如图1,在菱形ABCD中,,点E,F分别是AC,AB上的点,且,猜想:①的值是_______;②直线DE与直线CF所成的角中较小的角的度数是_______.(2)类比探究:如图2,将绕点A逆时针旋转,在旋转的过程中,(1)中结论是否成立,就图2的情形说明理由.(3)拓展延伸:在绕点A旋转的过程中,当三点共线时,请直接写出CF的长.20.(1)问题提出:如图①,在矩形中,,点为边上一点,连接,过点作对角线的垂线,垂足为,点为的中点,连接,,.可知的形状为______;(2)深人探究:如图②,将在平面内绕点顺时针旋转,请判断的形状是否变化,并说明理由;(提示:延长到,使;延长到,使,连接,,,构造全等三角形进行证明)(3)拓展延伸:如果,,在旋转过程中,当点,,在同一条直线上时,请直接写出的长.【参考答案】***试卷处理标记,请不要删除一、中考几何压轴题1.动手实践:,、、;(1)5,10;(2)见解析;(3)【分析】动手实践:由等腰Rt△AEF与正方形ABCD可得AF=AE,AB=AD,∠ABC=∠BAD=90°,可得出∠BAF=∠DAE,即可得解析:动手实践:,、、;(1)5,10;(2)见解析;(3)【分析】动手实践:由等腰Rt△AEF与正方形ABCD可得AF=AE,AB=AD,∠ABC=∠BAD=90°,可得出∠BAF=∠DAE,即可得△ADE≌△ABF,根据全等三角形的性质可得∠ABF=∠D=90°,则∠ABF+∠ABC=180°,即F、B、C三点共线;(1)若n=2,则DC=2DE,即点E是CD的中点,可证出△ADE≌△ABF,根据全等三角形的性质可得FB=DE=CD=AB,再证出△FBG∽△FCE,可得,可得BG=CE=AB,即可得出,根据三角形的面积公式分别表示S△AGE和S△BGF,即可得出S△AGE和S△BGF的比值;(2)若n=3,则DC=3DE,由(1)得△ADE≌△ABF,根据全等三角形的性质可得FB=DE=CD=AB,再证出△FBG∽△FCE,可得,可得4BG=CE=AB,可得出BG==AB,即可得出结论;(3)根据AG为GB的6倍得AG=6GB,则AG=AB=CD,BG=CD,由(1)得△FBG∽△FCE,则,可得出BG•FC=EC•FB,即CD(BF+BC)=(DC-DE)BF,设CD=x,DE=a,由DE=BF,BC=CD可得x2-6ax+7a2=0,解得:x=(3+)a,或x=(3-)a,即CD=(3+)DE,或CD=(3-)DE,n=3+或3-.【详解】解:动手实践:∵等腰Rt△AEF与正方形ABCD,∴AF=AE,AB=AD,∠ABC=∠BAD=90°,∴∠BAF=∠DAE,∴△ADE≌△ABF,∴∠ABF=∠D=90°,∴∠ABF+∠ABC=180°,即F、B、C三点共线,故答案为:ABF,F、B、C;(1)若n=2,则DC=2DE,即点E是CD的中点,:∵等腰Rt△AEF与正方形ABCD,∴AF=AE,AB=AD,∠ABC=∠BAD=90°,∴∠BAF=∠DAE,∴△ADE≌△ABF,∴FB=DE=CD=AB,∵四边形ABCD是正方形,∴AB∥CD,∴△FBG∽△FCE,∴,∴BG=CE=AB,∴AG=AB-BG=AB,∴,∵S△AGE=AG•BC=×AB×AB=AB2,S△BGF=BG•BF=×AB×AB=AB2,∴,故答案为:5,10;(2)证明:若n=3,则DC=3DE,由(1)得△ADE≌△ABF,∴FB=DE=CD=AB,由(1)得△FBG∽△FCE,∴,∴4BG=CE=AB,∴BG=AB,∴AG=AB-BG=AB,∴AG=5GB;(3)∵AG为GB的6倍,∴AG=6GB,∴AG=AB=CD,BG=CD,由(1)得△FBG∽△FCE,∴,∴BG•FC=EC•FB,即CD(BF+BC)=(DC-DE)BF,设CD=x,DE=a,∵DE=BF,BC=CD,∴x(a+x)=(x-a)a,整理得:x2-6ax+7a2=0,解得:x=(3+)a,或x=(3-)a,即CD=(3+)DE,或CD=(3-)DE,∴n=3+或3-.故答案为:3+或3-.【点睛】本题主要考查了等腰直角三角形的性质,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题.2.(1)S1+S2=S3,(2)成立,证明见解析,(3)【分析】(1)分别写出三个半圆的面积,再利用勾股定理转化即可.(2)先证明三个三角形相似,再计算出三个三角形的面积,即可得出结论.(3)解析:(1)S1+S2=S3,(2)成立,证明见解析,(3)【分析】(1)分别写出三个半圆的面积,再利用勾股定理转化即可.(2)先证明三个三角形相似,再计算出三个三角形的面积,即可得出结论.(3)先添加辅助线,在第二问的思路下,先证明三个三角形相似,得出三个三角形的面积关系,再利用30°、45°的直角三角形计算出相应的边,计算出五边形的面积即可.【详解】解:(1)设AB=b,AC=a,BC=c.则有:所以在Rt△ABC中,有a2+b2=c2,且故答案为:S1+S2=S3(2)∵∴设AB、AC、BC边上的高分别为h1,h2,h3∴,设AB=b,AC=a,BC=c则∴又在Rt△ABC中,有a2+b2=c2∴故依然成立(3)连接PD、BD,作AF⊥BP,EM⊥PD∵∠ABP=30°,∠BAP=105°∴∠APB=45°在Rt△ABF中,AF=AB=,BF=3,在Rt△AFP中,AF=PF=,则AP=,∵∠A=∠E,∴△ABP∽△EDP∴∠EPD=45°∠EDP=30°∴∠BPD=90°又PE=∴PM=EM=1,MD=则PD=1+∴=所以五边形的面积为:【点睛】本题考查勾股定理、与勾股定理有关的图形问题、相似三角形.是中考的常考知识.3.(1)见解析;(2)①;②【分析】(1)过点作于,证,即可证得;(2)①设,则,利用勾股定理求得,再利用勾股定理表示出,再证明,可得,由此可得,进而可求得答案;②过点P作于点,先由①得,再证解析:(1)见解析;(2)①;②【分析】(1)过点作于,证,即可证得;(2)①设,则,利用勾股定理求得,再利用勾股定理表示出,再证明,可得,由此可得,进而可求得答案;②过点P作于点,先由①得,再证明∠BFE=∠CGP,可得,进而利用勾股定理可求得,,,最后根据,可得,计算即可.【详解】(1)证明:如图,过点作于,则∠AHG=∠FHG=90°,∵在正方形中,∴∠HAD=∠D=∠B=90°,AD=AB,∴四边形AHGD为矩形,∴AD=HG,∴AB=HG,∵,∴∠FQA=90°,∴∠AFQ+∠BAE=90°,∵∠FHG=90°,∴∠AFQ+∠FGH=90°,∴∠BAE=∠FGH,∴在与中∴(ASA),∴;①∵点为的中点,∴,∵折叠,∴设,∴,在RtBFE中,BF2+BE2=EF2,∴,解得:,又∵,∴,如图,过点作于,则∠AHG=∠FHG=90°,∵在矩形中,∴∠HAD=∠BCD=∠B=90°,∴四边形AHGD为矩形,∴BC=HG,∵∠FHG=90°,∴∠AFQ+∠FGH=90°,∵,∴∠FQA=90°,∴∠AFQ+∠BAE=90°,∴∠BAE=∠FGH,又∵∠FHG=∠D=90°,∴,,,,,,又∵,,∴,∴;②如图,过点P作于点,∵,,∴由①得,∵∠EPG=∠GCE=90°,∠EOC=∠GOP,∴∠CGP=∠OEC,∵∠FEP=∠B=90°,∴∠OEC+∠BEF=90°,∠BFE+∠BEF=90°,∴∠BFE=∠OEC,∴∠BFE=∠CGP,又∵,∴,∴设,,则,,,解得:,,,,,,,,,,,,,,.【点睛】本题考查了正方形和矩形的性质,全等三角形和相似三角形的判定及性质,折叠的性质,勾股定理,题目综合性较强,有一定的难度,熟练掌握并灵活运用相关知识是解决本题的关键.4.教材呈现:见解析;探究:16;拓展:4【分析】教材呈现:先根据三角形全等的性质可得,再根据线段的和差可得,然后根据平行四边形的判定即可得证;探究:先由旋转的性质可得,再根据等底同高可得,从而可解析:教材呈现:见解析;探究:16;拓展:4【分析】教材呈现:先根据三角形全等的性质可得,再根据线段的和差可得,然后根据平行四边形的判定即可得证;探究:先由旋转的性质可得,再根据等底同高可得,从而可得,然后根据三角形中位线定理即可得;拓展:先根据正方形的性质和面积可得,从而可得,再根据等腰直角三角形和勾股定理可得,然后利用三角形的面积公式可得,最后利用平行四边形的性质即可得.【详解】解:教材呈现:补充完整证明过程如下:∴OE=OF,OA=OC,又∵AG=CH,∴OA-AG=OC-CH,即OG=OH,∴四边形EHFG是平行四边形;探究:如图,连接OE,BO,由旋转的性质得:,点O是AC的中点,点D是AO的中点,点F是CO的中点,,由等底同高得:,,又点E是AB的中点,点O是AC的中点,∴S△BEO=S△AEO=4,∴S△ABO=S△BEO+S△AEO=8,,故答案为:16;拓展:如图,过点E作于点O,四边形ABCD是面积为16的正方形,,在Rt△ABC中,由勾股定理得,∵AC为正方形的对角线,∴∠EAO=45°,点E是AB的中点,,∵,∴,∴AO=EO,在Rt△AEO中由勾股定理的AO2+EO2=AE2,即2OE2=4解得,,,,由教材呈现可知,四边形EHFG是平行四边形,则四边形EHFG的面积为,故答案为:.【点睛】本题考查了旋转的性质、三角形中线性质、平行四边形的判定与性质、正方形的性质,等腰直角三角形性质,勾股定理等知识点,较难的是拓展,通过作辅助线,构造等腰直角三角形是解题关键.5.(1)①见解析;②1;(2)=k,理由见解析;(3)【分析】(1)①由正方形的性质得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠解析:(1)①见解析;②1;(2)=k,理由见解析;(3)【分析】(1)①由正方形的性质得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH,可得AE=DQ.②证明四边形DQFG是平行四边形即可解决问题.(2)结论:=k.如图2中,作GM⊥AB于M.证明:△ABE∽△GMF即可解决问题.(3)如图2中,作PM⊥BC交BC的延长线于M.利用相似三角形的性质求出PM,CM即可解决问题.【详解】解:(1)①证明:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.②解:结论:=1.理由:∵DQ⊥AE,FG⊥AE,∴DQ∥FG,∵FQ∥DG,∴四边形DQFG是平行四边形,∴FG=DQ,∵AE=DQ,∴FG=AE,∴=1.故答案为1.(2)解:结论:.理由:如图2中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴=,∵∠AMG=∠D=∠DAM=90°,∴四边形AMGD是矩形,∴GM=AD,∴.(3)解:如图2中,作PM⊥BC交BC的延长线于M.∵FB∥GC,FE∥GP,∴∠CGP=∠BFE,∴tan∠CGP=tan∠BFE=,∴可以假设BE=3k,BF=4k,EF=AF=5k,∵=,FG=2,∴AE=3,∴(3k)2+(9k)2=(3)2,∴k=1或﹣1(舍弃),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴==,∴,∴,∴,∴.【点睛】本题属于相似形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.6.【概念与理解】,;【猜想与证明】(1),;(2)成立,证明见解析;【探究与应用】①;②△COD与△AOB面积之差为或;【联想与拓展】n3=9m3.【分析】【概念与理解】:根据题意信息即可得出答案解析:【概念与理解】,;【猜想与证明】(1),;(2)成立,证明见解析;【探究与应用】①;②△COD与△AOB面积之差为或;【联想与拓展】n3=9m3.【分析】【概念与理解】:根据题意信息即可得出答案;【猜想与证明】:(1)当x=1时,求出A,B,C,D的坐标进而得出AB,CD即可得出答案;当x=2时,求出A,B,C,D的坐标进而得出AB,CD即可得出答案;(2)任意x(x>0),求出A,B,C,D的坐标进而得出AB,CD即可得出答案;【探究与应用】:①根据已知条件表示出△AOB与△COD面积即可得出答案;②设M(x,0)(x>0),根据已知条件可得出,分两种情况当△AOB是直角三角形时解得,当△COD是直角三角形时,解得,把代入即可;【联想与拓展】:根据题意求出AEDF的坐标然后表示出面积再利用△PAE与△PDF面积的比值1:3,即可得出关系式;【详解】【概念与理解】∵y1=4x2∴由题意可得C1:∵y2=x2∴由题意可得C2:故答案为:C1:,C2:;【猜想与证明】(1)当x=1时,∵点A、B在抛物线C1上∴令x=1,则∴A,B∴AB=1∵点C、D在抛物线C2上∴令x=1,则∴C,D∴CD=2∴=当x=2时,∵点A、B在抛物线C1上∴令x=2,则∴A,B∴AB=∵点C、D在抛物线C2上∴令x=2,则∴C,D∴CD=∴=(2)对任意x(x>0)上述结论仍然成立理由如下:对任意x(x>0),∴A,B∴AB=对任意x(x>0),∴C,D∴CD=∴=【探究与应用】①连接OA,OB,OC,OD∴故答案为:②设M(x,0)(x>0),∵M(x,0)∴∴AB=∵M(x,0),∴∴CD=∵∴当△AOB是直角三角形时,由题意可知OA=OB∴△△AOB为等腰直角三角形∴OM=AM∴解得:∴当△COD是直角三角形时,由题意可知OD=OC∴△△COD为等腰直角三角形∴OM=CM∴解得:∴综上所述:△COD与△AOB面积之差为或【联想与拓展】∵M(k,0)且点A、B在抛物线C3上∴令x=k,则∴A∵AE∥x轴,且交C4于点E∴E∵M(k,0)且点C、D在抛物线C4上∴令x=k,则∴D∵DF∥x轴,且交C3于点F∴F∵AE∥x轴,且交C4于点E∴△PEA的高=∵DF∥x轴,且交C3于点F∴△PDF的高=∴∵△PAE与△PDF面积的比值1:3∴∴∴故答案为:【点睛】本题考出了抛物线性质的综合运用以及旋转等知识,由特殊到一般的数学思想的运用,等腰直角三角形的性质的运用,三角形的面积公式的运用,轴对称的性质的运用,在解答本题时运用两个抛物线上的点的特征不变建立方程求解是关键.7.(1)1,45°,不变;(2)∠AEP的大小不变,理由见解析;(3).【分析】(1)当点P为对角线交点时,根据正方形的性质可得出结论,当点P移动到其它位置时,过点P分别作AB,BC的垂线,垂足分解析:(1)1,45°,不变;(2)∠AEP的大小不变,理由见解析;(3).【分析】(1)当点P为对角线交点时,根据正方形的性质可得出结论,当点P移动到其它位置时,过点P分别作AB,BC的垂线,垂足分别为M,N.证△PAM≌△PEN,可得∠AEP的大小不变;(2)类似(1),过点P分别作AB,BC的垂线,垂足分别为M,N.证△PAM∽△PEN,可得∠AEP的大小不变;(3)利用(2)的结论,证BE=EC.再证△ABE∽△BCD,利用比例式求出k,再利用三角函数求出AP的长.【详解】解:(1)如图,∵k=1,∴在矩形ABCD是正方形,∵点P移动到对角线交点处,∴PA=PE,∠AEP=45°,故,如图,当点P移动到其它位置时,过点P分别作AB,BC的垂线,垂足分别为M,N.∴∠PMA=∠PMB=∠PNB=∠PNC=90°.∵四边形ABCD是正方形,∴∠MBN=90°,PN=PM,∴四边形PMBN是正方形,∴∠MPN=90°,∵∠APE=90°,∴∠APM+∠MPE=∠EPN+∠MPE=90°,∴∠APM=∠EPN.又∵∠PMA=∠PNB,∴△PAM≌△PEN,∴PA=PE,∴∠AEP=45°,故,∠AEP的大小不变;故答案为:1,45°,不变;(2)∠AEP的大小不变.理由如下:过点P分别作AB,BC的垂线,垂足分别为M,N.∴∠PMA=∠PMB=∠PNB=∠PNC=90°.∵四边形ABCD是矩形,∴∠MBN=∠BAD=∠BCD=90°,∴四边形PMBN是矩形,∴∠MPN=90°,PN=BM,又∵∠APE=90°,∴∠APM+∠MPE=∠EPN+∠MPE=90°,∴∠APM=∠EPN.又∵∠PMA=∠PNB,∴△PAM∽△PEN,∴=.在Rt△PBM和Rt△BAD中,tan∠ABD=.在Rt△APE中,tan∠AEP=.∵k为定值,∴∠AEP的大小不变.(3)∵PC⊥BD,∠BCD=90°,∴∠PBC+∠PCB=∠PBC+∠BDC=∠BPE+∠EPC=90°.∵AE∥PC,∴∠AEB=∠PCB,∠AEP=∠EPC.∵tan∠AEP=k,tan∠ABD=k,∴∠AEP=∠ABD.∵四边形ABCD是矩形,∴AB=CD,AD=BC,AB∥CD,∴∠ABD=∠BDC,∴∠AEB=∠PCB=∠BDC=∠AEP=∠EPC,∠PBC=∠BPE,∴BE=PE=EC.∵∠AEB=∠BDC,∠ABE=∠BCD,∴△ABE∽△BCD,∴,即,∴BC2=2AB2,∴,k=.在Rt△BPC中,tan∠PCB==tan∠AEP=k=,∴PB=PC=,由勾股定理得,∴PE=BC=,∴PA=PE=.【点睛】本题考查了矩形的性质与判定,正方形的判定与性质,相似三角形判定与性质,解直角三角形,解题关键是恰当作辅助线,构建全等三角形或相似三角形,利用解直角三角形的知识求解.8.(1),;(2)成立,不成立,与的关系为,见解析;(3)2或14【分析】(1)连接AE,证明△ABC、△APE为等边三角形,再证明,根据全等三角形的性质可得BP=CE,,再求得,即可得,所有.解析:(1),;(2)成立,不成立,与的关系为,见解析;(3)2或14【分析】(1)连接AE,证明△ABC、△APE为等边三角形,再证明,根据全等三角形的性质可得BP=CE,,再求得,即可得,所有.(2)成立,不成立,与的关系为.选图2证明:连接,易证,根据相似三角形的性质可得,,根据等腰直角三角形的性质可得,由此可得,结论可证;选图3证明,类比图2的证明方法即可;(3)分图2和图3两种情况求CE的长即可.【详解】(1)如图,连接AE,∵,且,∴△ABC为等边三角形,∴,AB=AC,∵,且,∴△APE为等边三角形,∴,AP=AE,∴,∴;在△BAP和△CAE中,,∴,∴BP=CE,,∵,,,∴∠ABP=30°,∴,∴,∴.故答案为:,.(2)成立,不成立,与的关系为.理由如下:选图2证明:连接,由题意可知:、均为等腰直角三角形,∴,,∴,即;又∵,∴,∴,,∵,,∴,∴,∴,∴,.选图3证明:理由如下:连接,由题意可知:、均为等腰直角三角形,∴,,∴,即,又∵,∴,∴,,∵,,∴,∴,∴,∴,;(3)或14.如图,∵,∴,∵,∴在中,,∴,由(2)知:,∴;如图,同理可得,∴,∴.综上:的长为2或14.【点睛】本题是三角形综合题,考查了全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练运用相关知识是解决问题的关键.9.(1)①1,②;(2)直线所夹锐角为,见解析;(3)满足条件的的值为【分析】(1)①②延长BD交AE的延长线于T,BT交AC于O.证明即可解决问题.(2)如图②中,设AC交BD于O,AE交BD解析:(1)①1,②;(2)直线所夹锐角为,见解析;(3)满足条件的的值为【分析】(1)①②延长BD交AE的延长线于T,BT交AC于O.证明即可解决问题.(2)如图②中,设AC交BD于O,AE交BD于T.证明,推出,可得结论.(3)分两种情形:①如图③-1中,当点D落在线段AC上时,作于H.②如图③-2中,当点D在AC的延长线上时,分别利用勾股定理求解即可.【详解】解:(1)如图①中,延长BD交AE的延长线于T,BT交AC于O.,是等边三角形,,,,,,,,,∴直线所夹锐角为,故答案为1,.(2)如图②中,设AC交于O,AE交于T.,是等腰直角三角形,,,,,,,,,∴直线所夹锐角为.(3)①如图③-1中,当点D落在线段AC上时,作于H.由题意,,,,,在中,②如图③-2中,当点D在AC的延长线上时,同法可得,综上所述,满足条件的的值为.【点睛】本题考查几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.10.(1)依据1:对角线互相平分的四边形是平行四边形,依据2:对角线相等的平行四边形是矩形;(2)见解析;(3)4【分析】(1)借助问题情景即可得出结论;(2)连接CE,先根据已证结论及正方形的性解析:(1)依据1:对角线互相平分的四边形是平行四边形,依据2:对角线相等的平行四边形是矩形;(2)见解析;(3)4【分析】(1)借助问题情景即可得出结论;(2)连接CE,先根据已证结论及正方形的性质得出AB=BC,∠1=∠4,再由矩形性质证得∠PBA=∠EBC,得出△PBA≌△EBC,即可得出结论;(3)过点B作BM⊥AP,垂足为M.结合(2)所得结论利用等腰直角三角形的性质可得BM=PM=ME,设BM=ME=x,则AM=x+-1.则根据三角函数解直角三角形求出x=1,再由直角三角形的性质求出正方形的边长,即可得出结果.【详解】解:(1)依据1:对角线互相平分的四边形是平行四边形.依据2:对角线相等的平行四边形是矩形.(2)证明:连接CE,由题意得,∠CEA=90°,∴∠1+∠2=180°-∠AEC=90°.∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC.∴∠3+∠4=180°-∠ABC=90°.∵∠2=∠3.∴∠1=∠4.∵四边形EBFD是矩形,∴∠EBF=90°.∴∠PBE=180°-∠EBF=90°.∴∠PBE=∠ABC.∴∠PBE+∠EBA=∠ABC+∠EBA.即∠PBA=∠EBC.∴△PBA≌△EBC.∴PB=EB.(3)解:过点B作BM⊥AP,垂足为M.由(2)可知,PB=BE,∠PBE=90°.∴BM=PM=ME.设BM=ME=x,则AM=x+-1.∵在Rt△ABM中,∠BAM=30°.∴AB=2BM,tan∠BAM=,解得x=1.∴AB=2,∴S正方形ABCD=2×2=4.【点睛】此题是四边形综合题,主要考查了正方形的性质,矩形的判定与性质,全等三角形的判定和性质等知识,熟练掌握特殊四边形、全等三角形及三角函数等相关知识点是解题的关键.11.(1)AF=EF;(2)成立,理由见解析;(3)12【分析】(1)延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;(2解析:(1)AF=EF;(2)成立,理由见解析;(3)12【分析】(1)延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;(2)证明原理同(1),延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;(3)补充完整图后证明四边形AEGC为矩形,进而得到∠ABC=∠ABE=∠EBG=60°即可求解.【详解】解:(1)延长DF到G点,并使FG=DC,连接GE,如下图所示∵,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠ADF,∴∠ADF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠ADF+∠FDE=90°,∴∠ACD=∠FDE,又延长DF使得FG=DC,∴FG+DF=DC+DF,∴DG=CF,在△ACF和△EDG中,,∴△ACF△EDG(SAS),∴GE=AF,∠G=∠AFC,又∠AFC=∠GFE,∴∠G=∠GFE∴GE=EF∴AF=EF,故AF与EF的数量关系为:AF=EF.故答案为:AF=EF;(2)仍旧成立,理由如下:延长DF到G点,并使FG=DC,连接GE,如下图所示设BD延长线DM交AE于M点,∵,∴DE=AC,BD=BC,∴∠CDB=∠DCB,且∠CDB=∠MDF,∴∠MDF=∠DCB,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∵∠EDB=90°,∴∠MDF+∠FDE=90°,∴∠ACD=∠FDE,又延长DF使得FG=DC,∴FG+DF=DC+DF,∴DG=CF,在△ACF和△EDG中,,∴△ACF△EDG(SAS),∴GE=AF,∠G=∠AFC,又∠AFC=∠GFE,∴∠G=∠GFE∴GE=EF,∴AF=EF,故AF与EF的数量关系为:AF=EF.故答案为:AF=EF;(3)如下图所示:∵BA=BE,∴∠BAE=∠BEA,∵∠BAE=∠EBG,∴∠BEA=∠EBG,∴AECG,∴∠AEG+∠G=180°,∴∠AEG=90°,∴∠ACG=∠G=∠AEG=90°,∴四边形AEGC为矩形,∴AC=EG,且AB=BE,∴Rt△ACBRt△EGB(HL),∴BG=BC=6,∠ABC=∠EBG,又∵ED=AC=EG,且EB=EB,∴Rt△EDBRt△EGB(HL),∴DB=GB=6,∠EBG=∠ABE,∴∠ABC=∠ABE=∠EBG=60°,∴∠BAC=30°,∴在Rt△ABC中由30°所对的直角边等于斜边的一半可知:.故答案为:.【点睛】本题属于四边形的综合题,考查了三角形全等的性质和判定,矩形的性质和判定,本题的关键是延长DF到G点并使FG=DC,进而构造全等,本题难度稍大,需要作出合适的辅助线.12.等腰直角三角形;(1)①1:;②互相平行;③;(2)22.5°或67.5°【分析】特例感知:根据三角形的中位线定理得出PQ//BD,PQ=,结合已知即可得出答案;(1)①先根据勾股定理得出EF解析:等腰直角三角形;(1)①1:;②互相平行;③;(2)22.5°或67.5°【分析】特例感知:根据三角形的中位线定理得出PQ//BD,PQ=,结合已知即可得出答案;(1)①先根据勾股定理得出EF=,再根据△EGF∽△BGA得出,从而得出FG:GA的值;②过P作PM//BC交CE与点M,再证得F在PM上即可;③根据三角形的中位线定理得出PD//CE,结合已知得出P在AD上,得出PQ=,再利用勾股定理得出PQ的长;(2)分点F在BC的下方和上方两种情况加以讨论即可【详解】解:特例感知:∵P、Q分别为BE、AF的中点,∴PQ//BD,PQ=,∵△ABD是等腰直角三角形,∴△APQ为等腰直角三角形,故答案为:等腰直角三角形;(1)①∵AB=6,∠B=45°,∠ADB=90°,∴,∴AD=BD=,∴EF=,∵∠BFC=∠BAC=90°,∴∠GFE=∠BAG,∵∠AGP=∠EGF,∴∠ABQ=∠GBF,∴△EGF∽△BGA,∴,∴故答案为:;②如图,过P作PM//BC交CE与点M,∴,∴EM=CM∴FM//BC,∴F在PM上,∴PF∥CD,故答案为:平行;③∵BP=PE,BD=CD,∴DP为△BCE的中位线,∴PD//CE,∵CE⊥BC,∴PD⊥BC,又∵AD⊥BC,∴P在AD上,∠APF=∠ADC=90°,∵Q为AF的中点,∴PQ=,又∵∠B=45°,∠ADB=90°,∴,∴FC=EF=,∴AF=AC-CF=6-,∴PQ==;(2)当点F在BC的下方时,如图∵AC⊥CF∴∠ACF=90°,∵∠ACD=45°,∴∠BCF=45°,∴点E在BC边上,由旋转的性质可得AC=CE,∴∠AEC=∠CAE=67.5°当点F在BC的上方时,如图∵AC⊥CF∴∠ACF=90°,∵∠ACD=45°,∠FCE=45°,∴点E在BC边的延长线上,∴∠ACE=135°,由旋转的性质可得AC=CE,∴∠AEC=∠CAE=22.5°【点睛】本题考查了几何变换---旋转综合题,涉及到勾股定理、三角形中位线以及相似三角形的性质和判定,清楚准确的分析出旋转的过程是解题的关键13.(1)①;或;证明见解析;②菱形,证明见解析;(2)①;②;③【分析】(1)①利用矩形的性质与轴对称的性质证明如图1,连接证明即可得到答案;②如图1,由①得:再证明四边形为平行四边形解析:(1)①;或;证明见解析;②菱形,证明见解析;(2)①;②;③【分析】(1)①利用矩形的性质与轴对称的性质证明如图1,连接证明即可得到答案;②如图1,由①得:再证明四边形为平行四边形与可得结论;(2)①如图2,连接由折叠可得:再利用勾股定理可得答案;②如图3,连接交于证明四边形是菱形,可得从而可得答案;③由②得:可得,再利用二次函数的性质可得答案.【详解】解:(1)①矩形由折叠可得:如图1,连接由折叠可得:同理:故答案为:,或②如图1,由①得:矩形四边形为平行四边形,四边形为菱形,(2)①如图2,连接由折叠可得:矩形,,故答案为:②如图3,连接交于矩形重合,同理可得:由对折可得:四边形是菱形,,,故答案为:③由②得:当时,最小,最小值为的最小值为:故答案为:【点睛】本题考查的是全等三角形的判定与性质,平行四边形的判定,矩形的性质,菱形的判定与性质,勾股定理的应用,二次函数的性质,熟练掌握以上知识是解题的关键.14.(1)①60°;②相等;(2)∠AEB=90°,AE=2CM+BE,证明见解析;(3),【分析】(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一解析:(1)①60°;②相等;(2)∠AEB=90°,AE=2CM+BE,证明见解析;(3),【分析】(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.【详解】解:(1)①如图1.∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,∵,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2.∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上,∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°,∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°,∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD,∴=2AH+1,∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD,∴=2AH﹣1,∴AH=.综上所述:点A到BP的距离为或.【点睛】本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.15.(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=.【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF解析:(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=.【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;②根据旋转的性质作辅助线,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G在一条直线上,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;(2)如图3,同理作旋转三角形,根据等腰直角三角形性质和勾股定理求出∠ABC=∠C=45°,BC=4,根据旋转的性质得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,证△FAD≌△EAD,根据全等得出DF=DE,设DE=x,则DF=x,BF=CE=3﹣x,根据勾股定理得出方程,求出x即可.【详解】解:(1)∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共线,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案为:EF=BE+DF;②成立,理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,与①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC==4,如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中,∴△FAD≌△EAD(SAS),∴DF=DE,设DE=x,则DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=,即DE=.【点睛】本题考查了四边形的综合题,旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,运用类比的思想;首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.16.(1)①1;②90°;(2)(2),,理由见解析;(3)或【分析】(1)①根据已知条件可知为等边三角形,根据等边三角形的性质可证明,即可得出答案;②根据,得出,因为,继而推出;(2)利用已知解析:(1)①1;②90°;(2)(2),,理由见解析;(3)或【分析】(1)①根据已知条件可知为等边三角形,根据等边三角形的性质可证明,即可得出答案;②根据,得出,因为,继而推出;(2)利用已知条件证明△ACD∽△BCE,即可推出,;(3)当点E在AF右边时,如图2所示,由已知条件可得出,在中运用勾股定理可求出AD的值,再运用(2)中结论即可得出BE的值;当点E在AF左边时,如图3所示,可证明,,再运用(2)中结论即可得出BE的值.【详解】解:(1)①∵,,∴为等边三角形∴∴∴∴的值为1;故答案为:1;②∵∴∵∴∴∵∴故答案为:90°.(2),.理由如下:在Rt△ABC中,,.∴.同理:.∴.又.∴.∴△ACD∽△BCE.∴,.∴.(3)当点E在AF右边时,如图2所示:∵,,,∴,∴∵∴;当点E在AF左边时,如图3所示同理,可得,∵∴∴∴∵∵∴综上所述,BE的值为或.【点睛】本题是一道关于三角形相似的综合题目,涉及的知识点有全等三角形的判定及性质、相似三角形的判定及性质、等边三角形的判定、解直角三角形、勾股定理的应用等多个知识点,它充分体现了数学解题中的数形结合思想和整体转化思想.17.(1)相等;(2)不成立,理由见解析;(3)或.【分析】(1)证明△ABD≌△ACE(SAS),即可得出;(2)当在Rt△ADE和Rt△ABC中,,证明△ABD∽△ACE,求出BD与CE的比例解析:(1)相等;(2)不成立,理由见解析;(3)或.【分析】(1)证明△ABD≌△ACE(SAS),即可得出;(2)当在Rt△ADE和Rt△ABC中,,证明△ABD∽△ACE,求出BD与CE的比例;(3)分两种情况求出BD的长即可.【详解】(1)相等;提示:如图4所示.∵△ADE和△ABC均为等边三角形,∴∴∴在△ABD和△ACE中,∴△ABD≌△ACE(SAS)∴.(2)不成立;理由如下:如图5所示.在Rt△ADE和Rt△ABC中,∵∴∴∵∴△ABD∽△ACE∴∴故(1)中的结论不成立;(3)或.提示:分为两种情况:①如图6所示.易证:△ABD≌△ACE(SAS)∴∴∴由题意可知:设,则在Rt△BCE中,由勾股定理得:∴解之得:(舍去)∴;②如图7所示.易证:△ABD≌△ACE(SAS),设,则在Rt△BCE中,由勾股定理得:∴解之得:(舍去)∴.综上所述,或.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质、勾股定理、相似三角形的判定与性质等知识,解题的关键是学会运用分类讨论的思想考虑问题.18.(1)等腰三角形,理由见解析;(2)见解析;(3);(4)或【分析】(1)如图1中,△AFG是等腰三角形,利用全等三角形的性质证明即可.(2)如图2中,过点O作OL∥AB交DF于L,则∠AFG解析:(1)等腰三角形,理由见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农产品脱酶脱酶处理工艺流程考核试卷及答案
- 稻谷蛋白质含量测定工艺考核试卷及答案
- 马匹饲养记录管理工艺考核试卷及答案
- 中药合剂工协作考核试卷及答案
- 2025年6月浙江高考生物试卷真题及答案详解(精校打印版)
- 运球技术测试题及答案
- 银行资管考试题及答案
- 银行职工测试题及答案
- 电气专业试题及答案
- 农林专业试题及答案
- 预防校园欺凌主题班会课件(共36张PPT)
- 全国水土保持规划国家级水土流失重点预防区和重点治理区复核划分
- 北京工业地产工业园区调研报告
- 脑室和脑池解剖
- DB13(J)∕T 269-2018 电动汽车充电站及充电桩建设技术标准
- 机动车交通事故快速处理协议书
- 临床营养支持小组工作方案
- 集装箱内装仓库仓储最新协议
- 中学汉字听写大赛七年级组听写词语
- 黑龙江省普通高中学生综合评价报告单
- 勇敢面对挫折——主题班会
评论
0/150
提交评论