人教七年级下册数学期末综合复习含答案_第1页
人教七年级下册数学期末综合复习含答案_第2页
人教七年级下册数学期末综合复习含答案_第3页
人教七年级下册数学期末综合复习含答案_第4页
人教七年级下册数学期末综合复习含答案_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教七年级下册数学期末综合复习含答案一、选择题1.如图,直线,b被直线c所截,下列说法正确的是()A.∠2与∠3是同旁内角 B.∠1与∠4是同位角C.与是同旁内角 D.∠1与∠2是内错角2.下列图形中,哪个可以通过图1平移得到()A. B. C. D.3.若点在第四象限,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列命题是假命题的是()A.同位角相等,两直线平行B.三角形的一个外角等于与它不相邻的两个内角的和C.平行于同一条直线的两条直线平行D.平面内,到一个角两边距离相等的点在这个角的平分线上5.将一张边沿互相平行的纸条如图折叠后,若边,则翻折角与一定满足的关系是()A. B. C. D.6.下列语句中正确的是()A.-9的平方根是-3 B.9的平方根是3 C.9的立方根是 D.9的算术平方根是37.①如图1,,则;②如图2,,则;③如图3,,则;④如图4,直线,点O在直线EF上,则.以上结论正确的个数是()A.1个 B.2个 C.3个 D.4个8.如图,在平面直角坐标系中有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至,…依照此规律跳动下去,点第2020次跳动至的坐标为()A. B. C. D.九、填空题9.若,则±=_________.十、填空题10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______.十一、填空题11.如图,在中,.三角形的外角和的角平分线交于点E,则_____度.十二、填空题12.如图,,平分,交于,若,则的度数是______°.十三、填空题13.如图,将长方形ABCD沿DE折叠,使点C落在边AB上的点F处,若,则________°十四、填空题14.“”定义新运算:对于任意的有理数a和b,都有.例如:.当m为有理数时,则等于________.十五、填空题15.点到两坐标轴的距离相等,则________.十六、填空题16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2…第n次移动到点An,则△OA2A2021的面积是__________________.十七、解答题17.(1)计算:(2)比较与-3的大小十八、解答题18.求下列各式中的的值.(1);(2).十九、解答题19.如图.已知∠1=∠2,∠C=∠D,求证:∠A=∠F.(1)请把下面证明过程中序号对应的空白内容补充完整.证明:∴∠1=∠2(已知)又∵∠1=∠DMN()∵∠2=∠DMN(等量代换)∴DB∥EC()∴∠DBC+∠C=180°().∵∠C=∠D(已知),∴∠DBC+()=180°(等量代换)∴DF∥AC()∴∠A=∠F()(2)在(1)的基础上,小明进一步探究得到∠DBC=∠DEC,请帮他写出推理过程.二十、解答题20.已知点P(﹣3a﹣4,a+2).(1)若点P在y轴上,试求P点的坐标;(2)若M(5,8),且PM//x轴,试求P点的坐标;(3)若点P到x轴,y轴的距离相等,试求P点的坐标.二十一、解答题21.已知是的整数部分,是的小数部分,求代数式的平方根.二十二、解答题22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.二十三、解答题23.已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2.(1)求证:AB//CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH//EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度数.二十四、解答题24.综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动.(1)如图1,EF∥MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和∠APB之间的数量关系;(问题迁移)(2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动.①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由;②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系.二十五、解答题25.如图,在中,与的角平分线交于点.(1)若,则;(2)若,则;(3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则.【参考答案】一、选择题1.A解析:A【分析】同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.依据同位角、内错角以及同旁内角的特征进行判断即可.【详解】解:A.∠2与∠3是同旁内角,故说法正确,符合题意;B.∠1与∠4不是同位角,是对顶角,故说法错误,不合题意;C.∠2与∠4不是同旁内角,是内错角,故说法错误,不合题意;D.∠1与∠2不是内错角,是同位角,故说法错误,不合题意;故选:A.【点睛】本题主要考查了同位角、内错角以及同旁内角的特征,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.2.A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.考点:平移的性质.解析:A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.考点:平移的性质.3.A【分析】首先得出第四象限点的坐标性质,进而得出Q点的位置.【详解】解:∵点P(a,b)在第四象限,∴a>0,b<0,∴-b>0,∴点Q(-b,a)在第一象限.故选:A.【点睛】此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键.4.D【分析】利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项.【详解】解:A、同位角相等,两直线平行,正确,是真命题,不符合题意;B、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意;C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意;故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大.5.B【分析】根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出.【详解】解:由翻折可知,∠DAE=2,∠CBF=2,∵,∴∠DAB+∠CBA=180°,∴∠DAE+∠CBF=180°,即,∴,故选:B.【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.6.D【分析】根据平方根、立方根、算术平方根的定义逐一进行判断即可.【详解】A.负数没有平方根,故A选项错误;B.9的平方根是±3,故B选项错误;C.9的立方根是,故C选项错误;D.9的算术平方根是3,正确,故选D.【点睛】本题考查了平方根、立方根、算术平方根等知识,熟练掌握相关概念以及求解方法是解题的关键.7.B【分析】如图1所示,过点E作EF//AB,由平行线的性质即可得到∠A+∠AEF=180°,∠C+∠CEF=180°,则∠A+∠C+∠AEC=360°,故①错误;如图2所示,过点P作PE//AB,由平行线的性质即可得到∠A=∠APE=180°,∠C=∠CPE,再由∠APC=∠APE=∠CPE,即可得到∠APC=∠A-∠C,即可判断②;如图3所示,过点E作EF//AB,由平行线的性质即可得到∠A+∠AEF=180°,∠1=∠CEF,再由∠AEF+∠CEF=∠AEC,即可判断③;由平行线的性质即可得到,,再由,即可判断④.【详解】解:①如图所示,过点E作EF//AB,∵AB//CD,∴AB//CD//EF,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴∠A+∠AEF+∠C+∠CEF=360°,又∵∠AEF+∠CEF=∠AEC,∴∠A+∠C+∠AEC=360°,故①错误;②如图所示,过点P作PE//AB,∵AB//CD,∴AB//CD//PE,∴∠A=∠APE=180°,∠C=∠CPE,又∵∠APC=∠APE=∠CPE,∴∠APC=∠A-∠C,故②正确;③如图所示,过点E作EF//AB,∵AB//CD,∴AB//CD//EF,∴∠A+∠AEF=180°,∠1=∠CEF,又∵∠AEF+∠CEF=∠AEC,∴180°-∠A+∠1=∠AEC,故③错误;④∵,∴,,∵,∴,∴,故④正确;故选B【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【详解】解:如图,观察发现,第2次跳动至点的坐标是,第4次跳动至点的坐标是,第6次跳动至点的坐标是,第8次跳动至点的坐标是,第次跳动至点的坐标是,则第2020次跳动至点的坐标是,故选:A.【点睛】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.九、填空题9.±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵,∴,故答案为±1.01.【点睛】本题考查了算术平方根的移解析:±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵,∴,故答案为±1.01.【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.十、填空题10.21:05.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所解析:21:05.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05.故答案为21:05【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.十一、填空题11.【分析】如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.【详解】解:如图,∵∠B=40°,∴∠解析:【分析】如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.【详解】解:如图,∵∠B=40°,∴∠1+∠2=180°-∠B=140°,∴∠DAC+∠ACF=360°-∠1-∠2=220°,∵AE和CE分别是和的角平分线,∴,∴,∴.故答案为:70.【点睛】本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.十二、填空题12.25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB∥CD,∴∠1=∠ECD,∵CE平分∠ACD,∠ACD=50°,∴=25°,∴∠1=25°,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB∥CD,∴∠1=∠ECD,∵CE平分∠ACD,∠ACD=50°,∴=25°,∴∠1=25°,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.十三、填空题13.5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FE解析:5【分析】根据翻折的性质,可得到∠DEC=∠FED,∠BEF与∠DEC、∠FED三者相加为180°,求出∠BEF的度数即可.【详解】解:∵△DFE是由△DCE折叠得到的,∴∠DEC=∠FED,又∵∠EFB=45°,∠B=90°,∴∠BEF=45°,∴∠DEC=(180°-45°)=67.5°.故答案为:67.5.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.十四、填空题14.101【分析】根据“”的定义进行运算即可求解.【详解】解:====101.故答案为:101.【点睛】本题考查了新定义运算,理解新定义的法则是解题关键.解析:101【分析】根据“”的定义进行运算即可求解.【详解】解:====101.故答案为:101.【点睛】本题考查了新定义运算,理解新定义的法则是解题关键.十五、填空题15.或.【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点到两坐标轴的距离相等,∴,或,解得,或,故答案为:或.【点睛】本题考查了点到坐标轴的距解析:或.【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点到两坐标轴的距离相等,∴,或,解得,或,故答案为:或.【点睛】本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值.十六、填空题16.【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环解析:【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2∵2021÷4=505…1,∴A2021与A1是对应点,A2020与A0是对应点∴OA2020=505×2=1010,A1A2021=1010∴A2A2021=1010-1=1009则△OA2A2019的面积是×1×1009=,故答案为:.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.十七、解答题17.(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出-3=,即可得出结果.【详解】解:(1)原式===-1;(2)∵∴即解析:(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出-3=,即可得出结果.【详解】解:(1)原式===-1;(2)∵∴即.故答案为(1)-1;(2).【点睛】本题考查实数的运算及实数的大小比较,熟练掌握平方根和立方根的性质是解题的关键.十八、解答题18.(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.【详解】解:(1),,,或解析:(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.【详解】解:(1),,,或;(2),,,,.【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x2=a(a≥0)或x3=b的形式,再根据定义开平方或开立方,注意开平方时,有两个解.十九、解答题19.(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即解析:(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即可得解;(2)由平行线的性质及等量代换即可得解.【详解】解:(1)证明:∵∠1=∠2(已知),又∵∠1=∠DMN(对顶角相等),∴∠2=∠DMN(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠DBC+∠C=180°(两直线平行,同旁内角互补),∵∠C=∠D(已知),∵∠DBC+(∠D)=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).(2)∵DB∥EC,∴∠DBC+∠C=180°,∠DEC+∠D=180°,∵∠C=∠D,∴∠DBC=∠DEC.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.二十、解答题20.(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1).【分析】(1)根据y轴上的点的坐标特征:横坐标为0列方程求出a值即可得答案;(2)根据平行于x轴的直线上的点的纵坐标相解析:(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1).【分析】(1)根据y轴上的点的坐标特征:横坐标为0列方程求出a值即可得答案;(2)根据平行于x轴的直线上的点的纵坐标相等列方程求出a值即可得答案;(3)根据点P到x轴,y轴的距离相等可得,解方程求出a值即可得答案.【详解】(1)∵点P在y轴上,∴,∴,∴∴P(0,).(2)∵PM//x轴,∴,∴,此时,,∴P(-22,8)(3)∵若点P到x轴,y轴的距离相等,∴,∴或,解得:或,当时,﹣3a﹣4=,a+2=,∴P(,),当时,﹣3a﹣4=-1,a+2=1,∴P(-1,1),综上所述:P(,)或P(-1,1).【点睛】本题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.二十一、解答题21..【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解.【详解】解:∵,∴,∴的整数部分是3,则,的小数部分是,则,∴,∴9的平方根为.【点睛】本题考查实数的估算、实数解析:.【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解.【详解】解:∵,∴,∴的整数部分是3,则,的小数部分是,则,∴,∴9的平方根为.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键.二十二、解答题22.正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,∴,取正值,可得,解析:正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,∴,取正值,可得,∴答:正方形纸板的边长是18厘米.【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.二十三、解答题23.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线解析:(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明;(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题;【详解】(1)如图1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)结论:如图2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可证:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y+z﹣x,∵PQ平分∠EPH,∴Z=y+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键.二十四、解答题24.(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或【分析】(1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠解析:(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或【分析】(1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠PBN+∠CPB=180°,即有∠PAF+∠PBN+∠APB=360°;(2)①过P作PE∥AD交ON于E,根据平行线的性质,可得到,,于是;②分两种情况:当P在OB之间时;当P在OA的延长线上时,仿照①的方法即可解答.【详解】解:(1)∠PAF+∠PBN+∠APB=360°,理由如下:作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论