难点详解青岛版8年级下册数学期末试题附完整答案详解(全优)_第1页
难点详解青岛版8年级下册数学期末试题附完整答案详解(全优)_第2页
难点详解青岛版8年级下册数学期末试题附完整答案详解(全优)_第3页
难点详解青岛版8年级下册数学期末试题附完整答案详解(全优)_第4页
难点详解青岛版8年级下册数学期末试题附完整答案详解(全优)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青岛版8年级下册数学期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、若m=1+,则以下对m的值估算正确的是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<42、下列命题是真命题的是()A.三角形的外角大于与它相邻的内角B.立方根等于它本身的数是±1C.两个无理数的和还是无理数D.大于0且小于π的整数有3个3、下列图标中,既是轴对称图形,又是中心对称图形是()A. B.C. D.4、下列计算正确的是()A. B. C. D.5、菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较短的对角线长度是(

)A. B. C. D.6、下列说法不正确的是(

)A.若,则 B.若,则C.若,则 D.若,则7、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2020次得到正方形OA2020B2020C2020,如果点A的坐标为(1,0),那么点B2020的坐标为()A.(﹣1,1) B.(,0) C.(﹣1,﹣1) D.(0,)8、如图,直线与x轴、y轴交于A、B两点,在y轴上有一点C(0,4),动点M从A点发以每秒1个单位的速度沿x轴向左移动.当动到△COM与△AOB全等时,移的时间t是(

)A.2 B.4 C.2或4 D.2或6第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、使二次根式有意义的的取值范围是__.2、如图,点的坐标为,点的坐标为,将绕点第一次顺时针旋转得到△,将△绕点第二次顺时针旋转得到△,将△绕点第三次顺时针旋转得到△,,如此进行下去,则点的坐标为__.3、在Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图1,D、E分别是AB和CB边上的点,把△BDE沿直线DE折叠,若点B落在AC边上的点F处,则CE的最小值是_______;(2)如图2,CG是AB边上的中线,将△ACG沿CG翻折后得到△HCG,连接BH,则BH的长为______.4、请写出一个y随x的增大而减小的函数解析式_____.5、如图,F为正方形ABCD的边CD上一动点,AB=2,连接BF,过A作AH⊥BF交BC于H,交BF于G,连接CG,当CG为最小值时,CH的长为_____.6、六·一期间,小海一家外出旅行.如图是他们汽车行驶的路程(千米)与行驶的时间(小时)之间的关系.汽车行驶2小时到达目的地,这时汽车行驶了______千米.7、在,0,,﹣1.5这四个数中,最小的是_____.三、解答题(7小题,每小题10分,共计70分)1、计算题(1)计算:;(2)化简:.2、求下列各式中的(1)(2)3、如图所示(1)写出ABC三顶点的坐标;(2)在图上描出点A1(3,3),B1(2,﹣2),C1(4,﹣1),并说明ABC与A1B1C1的位置关系.4、如图1,在平面直角坐标系中,已知直线l:y=kx+b与x轴交于点A,与y轴交于点B,与直线CD相交于点D,其中AC=14,C(﹣6,0),D(2,8).(1)求直线l的函数解析式;(2)如图2,点P为线段CD延长线上的一点,连接PB,当△PBD的面积为7时,将线段BP沿着y轴方向平移,使得点P落在直线AB上的P'处,求点P′到直线CD的距离;(3)若点E为直线CD上的一点,则在平面直角坐标系中是否存在点F,使以点A,D,E,F为顶点的四边形为菱形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.5、计算:(1)计算:+()﹣1;(2)求x的值:(x﹣1)2﹣4=0.6、已知:如图,线段a和∠α.求作:矩形ABCD,使AB=a,∠CAB=∠α.7、-参考答案-一、单选题1、C【解析】【分析】根据的范围进行估算解答即可.【详解】解:∵1<<2,∴2<1+<3,即2<m<3,故选:C.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.2、D【解析】【分析】根据三角形外角性质可判断A,根据立方根等于它本身列方程,两边立方得,再因式分解得出方程的解可判断B,列举反例可判断C,根据实数范围确定具体的整数,然后查出个数可判断D.【详解】A.三角形的外角大于与任何一个和它不相邻的内角,故选项A不是真命题;B.立方根等于它本身的数,,两边立方得,因式分解得,解得x=±1,0,故选项B不是真命题;C.两个无理数的和不一定是无理数例如2+与-,它们之和是有理数,故选项C不是真命题;D.大于0且小于π的整数为1,2,3,共有3个整数,故选项D是真命题.故选D.【点睛】本题考查真假命题的识别,掌握证明需要证明,假命题需举反例是解题关键.3、C【解析】【分析】若一个图形绕着某点旋转后能与原来的图形重合,这个图形就叫做中心对称图形;若一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫轴对称图形.同时满足两个定义就是所选答案.【详解】只有C选项同时符合轴对称图形和中心对称图形的定义,故选:C.【点睛】本题考察了轴对称图形和中心对称图形的定义,牢记并理解定义是做出本题的关键.4、D【解析】【分析】根据二次根式运算法则,逐项计算即可.【详解】解:A.不是同类二次根式,不能合并,不符合题意;B.,不符合题意;C.,不符合题意;D.,符合题意;故选:D.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则进行计算.5、D【解析】【分析】根据已知可求得菱形的边长及其两内角的度数,得出较短的对角线与菱形两边围成的三角形是等边三角形,即可得出结果.【详解】如图所示:∵菱形的周长为20cm,∴菱形的边长为5cm,∵两邻角之比为1:2,∴较小角为60°,∴,∵AB=5cm,,∴为等边三角形,∴cm,∴较短的对角线为5cm,故选D.【点睛】本题考查了菱形的性质、等边三角形的判定与性质等知识;熟练掌握菱形的性质与等边三角形的判定是解题的关键.6、A【解析】【分析】利用不等式的性质逐项判断,得出答案即可.【详解】解:、若,则,时不成立,此选项错误,符合题意;B、若,则,此选项正确,不符合题意;C、若,则,此选项正确,不符合题意;D、若,则,此选项正确,不符合题意.故选:A.【点睛】此题考查不等式的性质,解题关键是熟记不等式的性质:性质、不等式的两边都加上或减去同一个数或同一个整式,不等号的方向不变.性质、不等式两边都乘或除以同一个正数,不等号的方向不变.性质、不等式两边都乘或除以同一个负数,不等号方向改变.7、C【解析】【分析】根据正方形的性质和旋转性质可发现规律:点B旋转后对应的坐标8次一循环,据此解答即可求解.【详解】解:连接OB,∵四边形OABC是正方形,A的坐标为(1,0),∴OA=AB=OC=BC=1,∠OAB=90°,∠AOB=45°,∴B(1,1),由勾股定理得:,由旋转性质得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针连续旋转45°,相当于将OB绕点O逆时针连续旋转45°,∴依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(-1,1),B2(-,0),B4(-1,-1),B5(0,-),B6(1,-1),B7(,0),

B8(1,1),……,发现规律:点B旋转后对应的坐标8次一循环,∵2020=8×252+4,∴点B2020与点B4重合,∴点B2020的坐标为(-1,-1),故选:C.【点睛】本题考查坐标与旋转规律问题、正方形的性质、旋转的性质、勾股定理等知识,熟练掌握正方形的性质和旋转性质,正确得出变化规律是解答的关键.8、D【解析】【分析】先求解的坐标,再利用全等三角形的性质求解再结合轴对称的性质可得答案.【详解】解:直线与x轴、y轴交于A、B两点,令则令,则而当时,而如图,当关于轴对称时,此时此时故选:D【点睛】本题考查的是一次函数的性质,全等三角形的判定与性质,熟悉全等三角形的基本图形是解本题的关键.二、填空题1、【解析】【分析】根据二次根式有意义的条件可得,再解即可.【详解】解答:解:由题意得:,解得:,故答案为:.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2、【解析】【分析】根据题意得出点坐标变化规律,进而得出点的坐标位置,进而得出答案.【详解】解:点的坐标为,点的坐标为,是直角三角形,,,将绕点第一次顺时针旋转得到△,此时为,将△绕点第二次顺时针旋转得到△,得到为,再将△绕点第三次顺时针旋转得到△,得到,,依此规律,每4次循环一周,,,,,,点,即.故答案为.【点睛】此题主要考查了坐标与图形旋转,得出点坐标变化规律是解题关键.3、

【解析】【分析】(1)当点B与点A重合时,CE最小,设CE=x,由勾股定理得,代入数值求出x值即可;(2)根据勾股定理求出AB,利用中线的性质得到CG=AG,过点G作GD⊥AC于D,由翻折得,求出EH,过点G作GF⊥BH,证明四边形GEHF是矩形,得到GF=EH,勾股定理求出BF,由BH=2BF求出答案.【详解】解:(1)当点B与点A重合时,CE最小,如图,设CE=x,则BE=8-x,由折叠得AE=BE=8-x,∵∠ACB=90°,,∴,解得x=,即CE的最小值是,(2)∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8.∴,∵CG是AB边上的中线,∴,AG=BG=5,∴CG=AG,过点G作GD⊥AC于D,则,∴DG=4,由翻折得,∴,∴,得,过点G作GF⊥BH,∵GH=AG=BG,∴FH=BF,∠HGF=∠BGF,∵∠AGC=∠HGC,∴∠CGF=90°=∠GEH=∠GFH,∴四边形GEHF是矩形,∴GF=,∴∴BH=2BF=.故答案为:,.【点睛】此题考查了翻折的性质,勾股定理的应用,等腰三角形三线合一的性质,矩形的判定定理及性质定理,直角三角形斜边中线的性质,熟记各知识点并应用是解题的关键.4、答案不唯一,y=-x.【解析】【分析】根据函数的增减性,去选择函数.【详解】根据题意,得y=-x,故答案为:y=-x.【点睛】本题考查了函数的增减性,熟练掌握函数的增减性是解题的关键.5、##【解析】【分析】取AB的中点O,连接OG,OC,根据的长为定值,当O,G,C共线时,CG的值最小,证明CF=CG=BH即可解决问题.【详解】解:如图,取AB的中点O,连接OG,OC.四边形ABCD是正方形,ABC=90°,AB=2,OB=OA=1,,AH⊥BF,AGB=90°,AO=OB,OG=AB=1,,当O、G、C共线时,CG的值最小,最小值=,此时如图,OB=OG=1,OBG=OGB,ABCD,OBG=CFG,OGB=CGF,CGF=CFG,CF=CG=,ABH=BCF=AGB=90°,∠BAH+∠ABG=90°,∠ABG+∠CBF=90°,∠BAH=∠CBF,AB=BC,△ABH△BCF(ASA),BH=CF=,CH=BC-BH=2-()=3-,故答案为:【点睛】本题考查正方形的性质,全等三角形的判定和性质,直角三角形斜边中线的性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线.6、140【解析】【分析】求出0.5~2小时内直线的解析式,然后令x=2即可求解.【详解】解:设直线AB解析式为:y=kx+b,代入点A(0.5,20),B(1.5,100),∴,解得:,∴直线AB的解析式为:y=80x-20,令x=2,此时y=140,故答案为:140.【点睛】本题考查了待定系数法求一次函数的解析式,属于基础题,读懂题意,计算过程中细心即可.7、-1.5【解析】【分析】根据负数<0<正数可知,此题是两个负数比较大小,含有根号的比较大小中,如果都是负数:谁的平方大,谁就小.【详解】因为,所以-1.5<,所以-1.5<<0<.故答案为:-1.5.【点睛】此题考查的是实数的比较大小,含有根号的比较大小中如果都是正数:谁的平方大,谁就大;如果都是负数:谁的平方大,谁就小;一正一负:正的大.三、解答题1、(1)2(2)【解析】【分析】(1)先化简根式,求绝对值和零指数幂,然后进行加减运算即可;(2)先通分、因式分解,然后计算乘除即可.(1)解:(2)解:【点睛】本题考查了有理数的混合运算,分式化简.解题的关键在于正确的计算和因式分解.2、(1)或;(2)【解析】【分析】(1)先移项,再合并同类项,再根据平方根的定义求解;(2)先根据立方根的定义开立方,再解方程即可求解.(1),,,或;(2),,.【点睛】本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的定义.3、(1)A(﹣2,2),B(﹣3,﹣3),C(﹣1,﹣2)(2)描点见解析,位置关系:ABC向右平移5个单位,再向上平移1个单位得到A1B1C1【解析】【分析】(1)结合直角坐标系即可得出的A,B,C坐标;(2)先根据题意在直角坐标系里描出点A1(3,3),B1(2,﹣2),C1(4,﹣1),再根据平移规律即可得出结论.(1)A(﹣2,2),B(﹣3,﹣3),C(﹣1,﹣2);(2)如图,位置关系:ABC向右平移5个单位,再向上平移1个单位得到A1B1C1.【点睛】本题考查了平面直角坐标系中点的坐标特征以及平移规律,正确在平面直角坐标系中描出对应点是解题的关键.4、(1)直线l的函数解析式为(2)点到直线的距离为(3)存在点或或或,使以点A,D,E,F为顶点的四边形为菱形.【解析】【分析】(1)用待定系数法即可求解;(2)由△PBD的面积求出点P的坐标,进而求出点P'(5,4),构建△P'DN用解直角三角形的方法即可求解;(3)分AD是菱形的边、AD是菱形的对角线两种情况,利用图象平移和中点公式,分别求解即可.(1)解:∵,点A在点C右侧,∴.∵直线l与直线相交于点,∴解得

∴直线l的函数解析式为.(2)解:如图1,过点P作轴于点N,作轴,交于点,过点作于点M,过点D作轴于点E,设与y轴交于点F,设直线的解析式为,∵,∴解得∴直线的解析式为.∴.∴∵,∴∵直线l的解析式为,∴.∴.∴.设,∵,∴,即,解得.∴.∵将线段沿着y轴方向平移,使得点P落在直线上的处,∴.∴.∴.∵,∴.∵,∴是等腰直角三角形.∴,即点到直线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论