难点解析京改版数学8年级上册期末测试卷及答案详解_第1页
难点解析京改版数学8年级上册期末测试卷及答案详解_第2页
难点解析京改版数学8年级上册期末测试卷及答案详解_第3页
难点解析京改版数学8年级上册期末测试卷及答案详解_第4页
难点解析京改版数学8年级上册期末测试卷及答案详解_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

京改版数学8年级上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、等腰三角形两边长为3,6,则第三边的长是(

)A.3 B.6 C. D.3或62、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=65°,∠ACB=35°,然后在M处立了标杆,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA3、如图,边长为1的正方形网格图中,点,都在格点上,若,则的长为(

)A. B. C. D.4、给出下列命题,正确的有(

)个①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形A.1个 B.2个 C.3个 D.4个5、约分:(

)A. B. C. D.6、如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=S△ABP;⑤S△APH=S△ADE,其中正确的结论有(

)个A.2 B.3 C.4 D.5二、多选题(7小题,每小题2分,共计14分)1、下列根式中,能再化简的二次根式是(

)A. B. C. D.2、下列约分不正确的是(

)A. B. C. D.3、下列不是真命题的是()A.如果a>b,a>c,那么b=cB.相等的角是对顶角C.一个角的补角大于这个角D.一个三角形中至少有两个锐角4、如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:①作线段,分别以点、为圆心,以长为半径画弧,两弧相交于点、;②连接、,作直线,且与相交于点.则下列说法正确的是(

)A.是等边三角形 B.C. D.5、已知关于x的分式方程无解,则m的值为(

)A.0 B. C. D.6、下列命题中,真命题是(

)A.两个锐角对应相等的两个直角三角形全等B.斜边及一锐角对应相等的两个直角三角形全等C.两条直角边对应相等的两个直角三角形全等D.一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等7、如图AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,则下列四个结论中正确的有(

)A.DE=DF B.DB=DC C.AD⊥BC D.AC=3BF第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、方程的解为__________.2、比较下列各数的大小:(1)____3;(2)____-3、给出表格:0.00010.011100100000.010.1110100利用表格中的规律计算:已知,则____.(用含的代数式表示)4、已知,当分别取1,2,3,……,2020时,所对应值的总和是__________.5、数学家发明了一个魔术盒,当任意“数对”进入其中时,会得到一个新的数:,例如把放入其中,就会得到,现将“数对”放入其中后,得到的数是__________.6、在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离有5米.则旗杆的高度______.7、如图,在四边形中,于,则的长为__________四、解答题(6小题,每小题10分,共计60分)1、如图,在中,,;点在上,.连接并延长交于.(1)求证:;(2)求证:;(3)若,与有什么数量关系?请说明理由.2、如图,在和中,,,.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的绕点A顺时针旋转,如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边和等边如图③所示,求线段BD的延长线和线段CE所夹锐角的度数.3、(1)计算:;(2)因式分解:.4、已知如图,E.F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分.5、如图,由△ABC中,,,.按如图所示方式折叠,使点B、C重合,折痕为DE,求出AE和AD的长.,6、计算:(1)(2)-参考答案-一、单选题1、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6.故选B.【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.2、D【解析】【分析】利用全等三角形的判定方法进行分析即可.【详解】解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故选:D.【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键.3、B【解析】【分析】利用勾股定理求出AB,再减去BC可得AC的长.【详解】解:由图可知:AB==,∵BC=,∴AC=AB-BC==,故选B.【考点】本题考查了二次根式的加减,勾股定理与网格问题,解题的关键是利用勾股定理求出线段AB的长.4、B【解析】【详解】解:①等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;②等腰三角形两腰上的高相等,本选项正确;③等腰三角形最小边不一定底边,故本选项错误;④等边三角形的高、中线、角平分线都相等,本选项正确;⑤等腰三角形可以是钝角三角形,故本选项错误,故选B5、A【解析】【分析】先进行乘法运算,然后约去分子分母的公因式即可得到答案.【详解】原式==,故选A.【考点】本题主要考查分式的乘法运算法则,掌握约分,是解题的关键.6、B【解析】【分析】①正确.利用三角形内角和定理以及角平分线的定义即可解决问题.②正确.证明△ABP≌△FBP,推出PA=PF,再证明△APH≌△FPD,推出PH=PD即可解决问题.③错误.利用反证法,假设成立,推出矛盾即可.④错误,可以证明S四边形ABDE=2S△ABP.⑤正确.由DH∥PE,利用等高模型解决问题即可.【详解】解:在△ABC中,AD、BE分别平分∠BAC、∠ABC∵∠ACB=90°∴∠A+∠B=90°又∵AD、BE分别平分∠BAC、∠ABC∴∠BAD+∠ABE=(∠A+∠B)=45°∴∠APB=135°,故①正确∴∠BPD=45°又∵PF⊥AD∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=FB,PA=PF在△APH和△FPD中∴△APH≌△FPD(ASA)∴PH=PD∴AD=AP+PD=PF+PH.故②正确∵△ABP≌△FBP,△APH≌△FPD∴S△APB=S△FPB,S△APH=S△FPD,PH=PD∵∠HPD=90°∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP∴S△EPH=S△EPD∴S△APH=S△AED,故⑤正确∵S四边形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正确若DH平分∠CDE,则∠CDH=∠EDH∵DH∥BE∴∠CDH=∠CBE=∠ABE∴∠CDE=∠ABC∴DE∥AB,这个显然与条件矛盾,故③错误故选B.【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.二、多选题1、BCD【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、该二次根式符合最简二次根式的定义,故本选项不符合题意;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式,故本选项符合题意;C、该二次根式的被开方数中含有能开得尽方的因数4,所以它不是最简二次根式,故本选项符合题意;D、该二次根式的被开方数中含有能开得尽方的因数9,所以它不是最简二次根式,故本选项符合题意;故选BCD.【考点】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2、ABD【解析】【分析】根据分式的约分的方法对每个选项逐个计算即可判断出正确选项.【详解】A.,错误,符合题意;B.,错误,符合题意;C.,正确,不符合题意;D.,错误,符合题意;故答案选:ABD【考点】本题考查了分式的约分,熟练掌握分式的运算法则是解决本题的关键.3、ABC【解析】【分析】根据不等式的性质、对顶角的性质、三角形和补角的性质进行判断即可.【详解】解:A、如果a>b,a>c,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、一个三角形中至少有两个锐角,原命题是真命题;故选:ABC.【考点】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、对顶角的性质、三角形和补角的性质,属于基础知识,难度不大.4、ABC【解析】【分析】根据等边三角形的判定和性质,线段垂直平分线的性质一一判断即可.【详解】解:由作图可知:AB=BC=AC,∴△ABC是等边三角形,故A选项正确∵等边三角形三线合一,由作图知,CD是线段AB的垂直平分线,∴,故B选项正确,∴,,故C选项正确,D选项错误.故选:ABC.【考点】此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.5、ABD【解析】【分析】先将分式方程化为整式方程,再由原分式方程无解,可得或,即可求解.【详解】解:化为整式方程,得:,即,∵关于x的分式方程无解,∴或,当时,,当,即或时,或,解得:或.故选:ABD.【考点】本题主要考查了分式方程无解的问题,理解并掌握分式方程无解分为两种情况:分式方程产生增根;整式方程本身无解是解题的关键.6、BCD【解析】【分析】判定两个直角三角形全等的方法有:SSS、AAS、ASA、HL四种,对每个选项依次判定解答.【详解】解:A、两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA,不能判定全等;故本项错误;B、斜边及一锐角对应相等,构成了AAS,能判定全等;故本项正确;C、两条直角边对应相等,构成了SAS,能判定全等;故本项正确;D、一条直角边和另一条直角边上的中线对应相等,可得另一直角边也相等,构成了SAS,能判定全等;故本项正确;故选BCD.【考点】本题主要考查两个直角三角形全等的判定,解决本题的关键是要熟练掌握全等三角形的判定.7、ABCD【解析】【分析】根据平行线的性质和和角平分线的定义证得AB=AC,再根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故B、C正确;再根据全等三角形的判定证明△CDE≌△DBF,得到DE=DF,CE=BF,结合已知即可得出A、D正确.【详解】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故选项B、C正确,在△CDE与△DBF中,∵∠C=∠CBF,CD=BD,∠EDC=∠BDF,∴△CDE≌△DBF,∴CE=BF,DE=DF,故选项A正确;∵AE=2BF,∴AC=3BF,故D正确;故答案为:ABCD.【考点】本题考查全等三角形的判定与性质、平行线的性质、角平分线的定义、等腰三角形的判定与性质,利用等腰三角形的判定和性质和全等三角形的判定和性质求解是解答的关键.三、填空题1、【解析】【分析】先通分,再根据分式有意义的条件即分母不为0,分式为0即分式的分子为0解题即可.【详解】解:故答案为:.【考点】本题考查解分式方程,涉及分式有意义的条件、分式的值为0等知识,是重要考点,难度较易,掌握相关知识是解题关键.2、

<;

<【解析】【分析】(1)根据数轴上表示的两个实数,右边的总比左边的大进行比较;(2)根据两个负数,绝对值大的反而小进行比较.【详解】解:(1)∵<,∴3<;(2)≈-3.143,-π≈-3.141,∵3.143>3.141∴<-π.故答案为<,<.【考点】本题考查了实数的大小比较,解题的关键是注意:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.3、【解析】【分析】根据题意易得,然后问题可求解.【详解】解:由,则;故答案为:.【考点】本题主要考查二次根式的性质,熟练掌握二次根式的性质是解题的关键.4、【解析】【分析】先化简二次根式求出y的表达式,再将x的取值依次代入,然后求和即可得.【详解】当时,当时,则所求的总和为故答案为:.【考点】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.5、12【解析】【分析】根据题中“数对”的新定义,求出所求即可.【详解】解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,故答案为:12.【考点】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.6、12米【解析】【分析】设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度.【详解】解:设旗杆的高度为米,根据题意可得:,解得:,答:旗杆的高度为12米.故答案为:12米.【考点】本题考查勾股定理的应用,关键看到旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求解.7、【解析】【分析】过点B作交DC的延长线交于点F,证明≌推出,,可得,由此即可解决问题;【详解】解:过点B作交DC的延长线交于点F,如右图所示,∵,,∴≌,,,即,,故答案为.【考点】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.四、解答题1、(1)见解析;(2)见解析;(3)若,则,理由见解析【解析】【分析】(1)首先利用SAS证明,即可得出结论;(2)利用全等三角形的性质和等量代换即可得出,从而有,则结论可证;(3)直接根据等腰三角形三线合一得出,又因为,则结论可证.【详解】解答:(1)证明:,.在和中,,,;(2)证明:∵,.,,即,,;

(3)若,则.理由如下:,∴BE是中线,

.,.【考点】本题主要考查全等三角形的判定及性质,等腰三角形的性质,掌握全等三角形的判定及性质和等腰三角形的性质是解题的关键.2、(1),见解析;(2),见解析;(3)【解析】【分析】(1)延长BD交CE于F,易证△EAC≌△DAB,可得BD=CE,∠ABD=∠ACE,根据∠AEC+∠ACE=90°,可得∠ABD+∠AEC=90°,即可解题;(2)延长BD交CE于F,易证∠BAD=∠EAC,即可证明△EAC≌△DAB,可得BD=CE,∠ABD=∠ACE,根据∠ABC+∠ACB=90°,可以求得∠CBF+∠BCF=90°,即可解题.(3)直线BD与直线EC的夹角为60°.如图③中,延长BD交EC于F.证明,可得结论.(1)延长BD交CE于F,在△EAC和△DAB中,,∴,∴BD=CE,∠ABD=∠ACE,∵∠AEC+∠ACE=90°,∴∠ABD+∠AEC=90°,∴∠BFE=90°,即EC⊥BD;(2)延长BD交CE于F,∵∠BAD+∠CAD=90°,∠CAD+∠EAC=90°,∴∠BAD=∠EAC,∵在△EAC和△DAB中,,∴,∴BD=CE,∠ABD=∠ACE.∵∠ABC+∠ACB=90°,∴∠CBF+∠BCF=∠ABC−∠ABD+∠ACB+∠ACE=90°,∴∠BFC=90°,即EC⊥BD.(3)延长BD交CE于F,∵∠BAD+∠CAD=60°,∠CAD+∠EAC=60°,∴∠BAD=∠EAC,∵在△EAC和△DAB中,,∴,∴BD=CE,∠ABD=∠ACE.∵∠ABC+∠ACB=120°,∴∠CBF+∠BCF=∠ABC−∠ABD+∠ACB+∠ACE=120°,∴∠BFC=60°【考点】本题考查了等腰直角三角形的性质、全等三角形的判定和性质、等边三角形的性质等知识,本题中求证△EAC≌△DAB是解题的关键.3、(1);(2)【解析】【分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论