难点解析-辽宁省新民市中考数学真题分类(数据分析)汇编定向测试试题(解析卷)_第1页
难点解析-辽宁省新民市中考数学真题分类(数据分析)汇编定向测试试题(解析卷)_第2页
难点解析-辽宁省新民市中考数学真题分类(数据分析)汇编定向测试试题(解析卷)_第3页
难点解析-辽宁省新民市中考数学真题分类(数据分析)汇编定向测试试题(解析卷)_第4页
难点解析-辽宁省新民市中考数学真题分类(数据分析)汇编定向测试试题(解析卷)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省新民市中考数学真题分类(数据分析)汇编定向测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表:

项目作品甲乙丙丁创新性90959090实用性90909585如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是(

)A.甲 B.乙 C.丙 D.丁2、小红连续天的体温数据如下(单位相):,,,,.关于这组数据下列说法正确的是(

)A.中位数是 B.众数是 C.平均数是 D.极差是3、小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是(

)A.中位数是3,众数是2 B.众数是1,平均数是2C.中位数是2,众数是2 D.中位数是3,平均数是2.54、统计一名射击运动员在某次训练中10次射击的中靶环数,获得如下数据:7,8,10,9,9,8,10,9,9,10.这组数据的众数是(

)A.7 B.8 C.9 D.105、在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是(

)A.6,6 B.4,6 C.5,6 D.5,56、某校篮球队有12名队员,队员的年龄情况统计如下:年龄/岁13141516人数2433则这12名队员年龄的中位数和众数分别是(

)A.14,15 B.14.5,14 C.14,14 D.14.5,157、小明参加校园歌手比赛,唱功得85分,音乐常识得95分,综合知识得90分,学校如果按如图所示的权重计算总评成绩,那么小明的总评成绩是(

)A.87分 B.87.5分 C.88.5分 D.89分8、如图是根据南街米粉店今年6月1日至5日每天的用水量(单位:吨)绘制成的折线统计图.下列结论正确的是()A.平均数是6 B.众数是7 C.中位数是11 D.方差是8第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、已知一组数据10、3、a、5的平均数为5,那么a为_____.2、某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如下表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为______分.3、一组数据0,1,3,2,4的平均数是__,这组数据的方差是__.4、已知一组数据1,a,3,6,7,它的平均数是5,这组数据的方差是_______.5、已知数据x1,x2,…,xn的平均数是3,方差是3,则数据x1+3,x2+3,x3+3,…,xn+3的平均数是__,方差是___.6、如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)7、根据第七次全国人口普查,华东六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.三、解答题(7小题,每小题10分,共计70分)1、在中国共产党成立一百周年之际,某校举行了以“童心向党”为主题的知识竞赛活动.发现该校全体学生的竞赛成绩(百分制)均不低于60分,现从中随机抽取名学生的竞赛成绩进行整理和分析(成绩得分用表示,共分成四组),并绘制成如下的竞赛成绩分组统计表和扇形统计图.其中“”这组的数据如下:90,92,93,95,95,96,96,96,97,100.竞赛成绩分组统计表组别竞赛成绩分组频数平均分186527538841095请根据以上信息,解答下列问题:(1)__________;(2)“”这组数据的众数是__________分;(3)随机抽取的这名学生竞赛成绩的平均分是___________分;(4)若学生竞赛成绩达到96分以上(含96分)获奖,请你估计全校1200名学生中获奖的人数.2、国家规定,中、小学生每天在校体育活动时间不低于1h.为此,某市就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生,根据调查结果绘制成的统计图如图所示,其中A组为,B组为,C组为,D组为.请根据上述信息解答下列问题:(1)本次调查数据的中位数落在______组内,众数落在______组内;(2)若该辖区约有20000名初中学生,请你估计其中达到国家规定体育活动时间的人数;(3)若A组取,B组取,C组取,D组取,试计算这300名学生平均每天在校体育活动的时间.3、某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,:4棵;:5棵;:6棵;:7棵.将各类的人数绘制成扇形统计图和条形统计图(如图所示),经确认扇形统计图是正确的,而条形统计图尚有一处错误.回答下列问题:(1)写出条形统计图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是;第二步:在该问题中,,,,,;第三步:(棵).①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估这260名学生共植树多少棵.4、为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t(单位:分钟).按照完成时间分成五组:A组“t≤45”,B组“45<t≤60”,C组“60<t≤75”,D组“75<t≤90”,E组“t>90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是,请补全条形统计图;(2)在扇形统计图中,B组的圆心角是度,本次调查数据的中位数落在组内;(3)若该校有1800名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.5、某校组织初三学生电脑技能竞赛,每班选派相同人数去参加竞赛,竞赛成绩分、、、四个等级,其中相应等级的得分依次记为100分、90分、80分、70分.将初三(1)班和(2)班的成绩整理并绘制成如下统计图:(1)班竞赛成绩统计图

(2)班竞赛成绩统计图平均数(分)中位数(分)众数(分)1班87.5902班100根据以上信息,解答下列问题:(1)此次竞赛中(2)班成绩在级以上(包括级)的人数为______;(2)______,______,______;(3)试运用所学的统计知识,从两个不同角度评价初三(1)班和初三(2)班的成绩.6、点燃创业之火,实现人生梦想.小娟计划从甲、乙两家生产商批发购进某品牌规格的奶粉若干罐,再选择A,B两家销售商进行出售.小娟分别从甲、乙两家生产商抽样5罐检测.数据如下表;从A,B两家销售商了解到近五年奶粉销售额相关数据如下图,已知(万元),(万元),(万元).甲、乙两家生产商抽样5罐奶粉每罐质量及数据分析统计表生产商每罐净含量平场数中位数方差甲980100010101010100010001000120乙950980101510209901000m230(1)直接写出________,_________万元.(2)根据统计图表中的数据,请问小娟该如何选择生产商与销售商?并说明理由.7、为了增强学生的疫情防控意识,某校进行了疫情防控知识竞赛.现从八、九年级各随机抽取了20名学生的知识竞赛分数(满分为100分,分数用x表示,共分成四组:A:,B:,C:,D:)进行整理、描述和分析,当分数不低于90分为优秀,下面给出部分信息.八年级随机抽取了20名学生的知识竞赛分数是:65,80,81,84,87,88,90,90,91,91,a,92,92,97,97,98,98,99,100,100九年级随机抽取了20名学生的知识竞赛分数中,A、D两组数据个数相等,B、C两组的数据是:92,94,88,92,90,94,85,92,91,93年级八年级九年级平均数90.5590.55中位数91b优秀率70%m%根据以上信息,回答下列问题:(1)a=______;b=______;m=______;n=______;(2)根据以上数据分析,你认为八、九年级哪个年级疫情防控知识掌握得更好?请说明理由(写出一条理由即可).(3)若该校八年级有900名学生,九年级有800名学生,估计这两个年级的学生疫情防控知识竞赛成绩为优秀(分数不低于90分为优秀)的一共有多少人?-参考答案-一、单选题1、B【解析】【分析】利用加权平均数计算总成绩,比较判断即可【详解】根据题意,得:甲:90×60%+90×40%=90;乙:95×60%+90×40%=93;丙:90×60%+95×40%=92;丁:90×60%+85×40%=88;故选B【考点】本题考查了加权平均数的计算,熟练掌握加权平均数的计算方法是解题的关键.2、B【解析】【分析】根据众数、中位数的概念求得众数和中位数,根据平均数和方差、极差公式计算平均数和极差即可得出答案.【详解】A.将这组数据从小到大的顺序排列:36.2,36.2,36.3,36.5,36.6,则中位数为36.3,故此选项错误B.36.2出现了两次,故众数是36.2,故此选项正确;C.平均数为(),故此选项错误;D.极差为36.6-36.2=0.4(),故此选项错误,故选:B.【考点】本题主要考查了中位数、众数、平均数和极差,熟练掌握它们的计算方法是解答的关键.3、C【解析】【分析】根据统计图中的数据,求出中位数,平均数,众数,即可做出判断.【详解】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;故选:C.【考点】此题考查了平均数,中位数,众数,熟练掌握各自的求法是解本题的关键.4、C【解析】【分析】根据众数的定义求解.【详解】解:在这一组数据中9出现了4次,次数是最多的,故众数是9;故选:C.【考点】本题考查了众数的意义.众数是一组数据中出现次数最多的数.5、D【解析】【分析】将这7个数从小到大排列,第4个数就是这组数的中位数.出现次数最多的数即是众数.【详解】将这7个数从小到大排列:4、5、5、5、6、7、9,第4个数为5,则这组数的中位数为:5,出现次数最多的数是5,故这组数的众数是5,故选:D.【考点】本题考查了中位数、众数的定义,充分理解中位数、众数的定义是解答本题的基础.6、此求出的这组数据的平均数与实际平均数的差是90÷15=故选B.6.B【解析】【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【详解】解:将12个数据按从小到大顺序排列:13,13,14,14,14,14,15,15,15,16,16,16,∵第6和第7个数据的平均数,∴中位数是:14.5,在这12名队员的年龄数据里,14岁出现了4次,次数最多,因而众数是14.故选:B.【考点】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7、C【解析】【分析】利用加权平均数按照比例即可求得小明的总评成绩.【详解】解:小明的总评成绩是:85×60%+95×30%+90×10%=88.5(分),故C正确.故选:C.【考点】本题考查了加权平均数的计算方法,在进行计算的时候注意权的分配,另外还应细心,否则很容易出错.8、D【解析】【分析】根据题目要求算出平均数、众数、中位数、方差,再作出选择即可.【详解】解:A、平均数为,故选项错误,不符合题意;B、众数为5、7、11、3、9,故选项错误,不符合题意;C、从小到大排列为3,5,7,9,11,中位数是7,故选项错误,不符合题意;D、方差,故选项正确,符合题意;故选∶D.【考点】本题考查平均数、众数、中位数、方差的算法,熟练掌握平均数、众数、中位数、方差的算法是解题的关键.二、填空题1、2【解析】【分析】根据平均数的计算方法,列出等式然后计算即可.【详解】解:依题意有,解得.故答案为:2.【考点】本题考查了算术平均数,正确理解算术平均数的意义是解题的关键.2、86【解析】【分析】根据加权平均数的计算法则求解即可.【详解】解:分,∴应聘者李某的总分为86分,故答案为:86.【考点】本题主要考查了加权平均数,熟知加权平均数的计算法则是解题的关键.3、

2

2【解析】【分析】依据平均数的定义:,计算即可得;再根据方差的定义:列式计算可得.【详解】解:这组数据的平均数,方差,故答案为:2,2.【考点】本题主要考查了平均数,方差的计算,熟悉相关性质是解题的关键.4、【解析】【分析】结合题意,根据平均数的性质,列一元一次方程并求解,即可得到a;再根据方差的性质计算,即可得到答案.【详解】∵1,a,3,6,7,它的平均数是5∴∴∴这组数据的方差是:故答案为:.【考点】本题考查了平均数、方差、一元一次方程的知识;解题的关键是熟练掌握平均数、方差的性质,从而完成求解.5、

6

3【解析】【分析】根据平均数的概念、方差的性质解答.【详解】∵数据x1,x2,…,xn的平均数是3,方差是3,∴,∴数据x1+3,x2+3,x3+3,…,xn+3平均数,方差是,故答案为:6,3.【考点】本题考查的是平均数和方差,当数据都加上一个数(或减去一个数)时,方差不变,当数据都乘上一个数(或除一个数)时,方差乘(或除)这个数的平方倍.6、甲【解析】【分析】先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.【详解】解:=(7+6+9+6+7)÷5=7(环),=(5+9+6+7+8)÷5=7(环),=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,∵1.2<2,∴甲的成绩较为稳定,故答案为:甲.【考点】本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.7、【解析】【分析】由图,将六省60岁及以上人口占比由小到大排列好,共有6个数,所以中位数等于中间两个数之和除以二.【详解】解:由图,将六省人口占比由小到大排列为:,由中位数的定义得:人口占比的中位数为,故答案为:.【考点】本题考查了求解中位数,解题的关键是:将数由小到大排列,根据数的个数分为两类.当个数为奇数时,中位数等于最中间的数;当个数为偶数个时,中位数等于中间两个数之和除以2.三、解答题1、(1)12;(2)96;(3)82.6;(4)120人【解析】【分析】(1)先由1组的信息求解总人数,再利用总人数乘以,可得的值;(2)由这一组出现次数最多的是:分,从而可得答案;(3)先求解的值,再求解50人的总得分,再除以总人数即可得到答案;(4)由1200乘以96分及96分以上的学生的占比即可得到答案.【详解】解:(1)由扇形图可得:1组频数为8人,占比所以总人数为:人,由2组占所以:,故答案为:12(2)由这一组的数据为:90,92,93,95,95,96,96,96,97,100.出现次数最多的是:分,所以这一组的众数为:分,故答案为:96(3)由扇形图可得:3组占:所以人,所以随机抽取的这50名学生竞赛成绩的平均分:分,故答案为:(4)由4组成绩可得96分及96分以上的学生有5人,所以全校1200名学生中获奖的人数为:人.【考点】本题考查的是从扇形图与频数分布表中获取信息,频数与频率,利用样本估计总体,众数的含义,加权平均数的计算,熟悉扇形图与频数分布表之间的关联关系是解题的关键.2、(1),;(2)12000;(3)1.16小时.【解析】【分析】(1)根据中位数和众数的定义,结合频数分布直方图中各组的数据求解即可;(2)用总人数乘以样本中、组人数所占比例即可;(3)根据加权平均数的定义列式计算即可.【详解】解:(1)被调查的总人数为300,而第150、151个数据均落在组,本次调查数据的中位数落在组内,组数据个数最多,众数落在组;故答案为:、;(2)(名,答:达到国家规定体育活动时间的人数是12000名;故答案为:18000名;(3),答:这300名学生平均每天在校体育活动的时间是1.16小时.【考点】本题主要考查频数分布直方图、中位数、众数及样本估计总体,解题的关键是掌握中位数、平均数及样本估计总体思想.3、(1)类型错误;(2)众数为5棵,中位数为5棵;(3)①第二步;②这260名学生共植树1378棵.【解析】【分析】(1)条形统计图中D的人数错误,利用总人数乘对应的百分比求解即可,应为20×10%;(2)根据中位数、众数的定义以及条形统计图及扇形统计图所给的数据,即可求出答案;(3)①小宇的分析是从第二步开始出现错误的;②根据平均数的计算公式先求出正确的平均数,再乘以260即可得到结果.【详解】解:(1)类型错误,理由如下:(名),而条形统计图中,类型的人数是3名,故类型错误;(2)众数为5棵,中位数为5棵.(3)①第二步.②(棵).(棵).故估计这260名学生共植树1378棵.故答案为(1)类型错误;(2)众数为5棵,中位数为5棵;(3)①第二步;②这260名学生共植树1378棵.【考点】本题考查条形统计图和扇形统计图,用到的知识点是平均数、中位数、众数以及用样本估计总体,弄清题意是解题的关键.4、(1)100,图形见解析(2)72,C;(3)估计该校每天完成书面作业不超过90分钟的学生有1710人.【解析】【分析】(1)根据C组的人数和所占的百分比,可以计算出本次调查的人数,然后即可计算出D组的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以计算出B组的圆心角的度数,以及中位数落在哪一组;(3)根据题意和统计图中的数据,可以计算出该校每天完成书面作业不超过90分钟的学生人数.(1)这次调查的样本容量是:25÷25%=100,D组的人数为:100-10-20-25-5=40,补全的条形统计图如图所示:故答案为:100;(2)在扇形统计图中,B组的圆心角是:360°×=72°,∵本次调查了100个数据,第50个数据和51个数据都在C组,∴中位数落在C组,故答案为:72,C;(3)1800×=1710(人),答:估计该校每天完成书面作业不超过90分钟的学生有1710人.【考点】本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.5、(1)17(2)90,88,85(3)见解析【解析】【分析】(1)根据(1)班的条形统计图求得参加竞赛的人数,再根据(2)班成绩在C级以上的比重求解即可;(2)根据众数、中位数以及平均数的方法,求解即可;(3)从平均数、众数以及中位数等方面对两个班进行评价即可.(1)解:由题意得:参加竞赛的人数有:(人)∵初三(2)班成绩在C级以上所占的比重为,∴初三(2)班成绩在C级以上得到人数有(人)故答案为:17;(2)解:根据题意可得:(2)班的平均成绩为70分的人数有人80分的人数有人90分的人数有人参加竞赛的人数为人,从小到大取第10、11位的成绩,其平均数为∴(2)班的中位数为观察统计图可以得出,(1)班的80分的人数有9人,最多,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论