版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《轴对称》定向测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是(
)A. B. C. D.2、如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的△ADH中(
)A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD3、如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°4、如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于
AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于(
)
A.2 B. C. D.5、以下四大通讯运营商的企业图标中,是轴对称图形的是()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,将长方形纸片按如图所示的方式折叠,为折痕,点落在,点落在点在同一直线上,则_______度;2、如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处.若,则为_________.3、如图,依据尺规作图的痕迹,计算∠α=________°.4、已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.5、如图,已知△ABC≌△ADE,且点B与点D对应,点C与点E对应,点D在BC上,∠BAE=114°,∠BAD=40°,则∠E的度数是______°.三、解答题(5小题,每小题10分,共计50分)1、如图1,在中,∠A=120°,∠C=20°,BD平分∠ABC交AC于点D.(1)求证:BD=CD.(2)如图2,若∠BAC的角平分线AE交BC于点E,求证:AB+BE=AC.(3)如图3,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论.2、(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE;(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论△ABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.3、如图AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.4、如图,在中,,过的中点作,,垂足分别为点、.(1)求证:;(2)若,求的度数.5、如图,点D是等边三角形ABC的边BC上一点,以AD为边作等边△ADE,连接CE.(1)求证:;(2)若∠BAD=20°,求∠AEC的度数.-参考答案-一、单选题1、D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项符合题意.故选:D.【考点】本题考查了轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.2、B【解析】【分析】翻折后的图形与翻折前的图形是全等图形,利用折叠的性质,正方形的性质,以及图形的对称性特点解题.【详解】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选B.【考点】本题主要考查翻折图形的性质,解决本题的关键是利用图形的对称性把所求的线段进行转移.3、A【解析】【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【详解】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故选A.【考点】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.4、C【解析】【详解】根据勾股定理求出BC,根据线段垂直平分线性质求出AE=BE,根据勾股定理求出AE,再根据勾股定理求出DE即可.解:在RtABC中,由勾股定理得:BC==4,连接AE,从作法可知:DE是AB的垂直评分线,根据性质AE=BE,在Rt△ACE中,由勾股定理得:AC+CE=AE,即3+(4-AE)=AE,解得:AE=,在Rt△ADE中,AD=AB=,由勾股定理得:DE+()=(),解得:DE=.故选C.“点睛”:本题考查了线段垂直平分线性质,勾股定理的应用,能灵活运用勾股定理得出方程是解此题的关键.5、D【解析】【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得.【详解】解:根据轴对称图形的定义判断可得:只有D选项符合题意,故选:D.【考点】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键.二、填空题1、【解析】【分析】由折叠的性质可得,,再由角的和差及平角的定义即可求出答案.【详解】解:由题意得:,,∵在同一直线上,∴.故答案为:90.【考点】本题主要考查了折叠的性质和平角的定义,属于基本题型,熟练掌握折叠的性质是解题的关键.2、105°.【解析】【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.【详解】∵AD∥BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=50°,∴∠ADB=∠BDG=25°,又∵∠2=50°,∴△ABD中,∠A=105°,∴∠A'=∠A=105°,故答案为105°.【考点】本题考查了平行四边形的性质,折叠的性质,三角形的外角性质,三角形内角和定理.3、56【解析】【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【详解】如图,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°-34°=56°,∴∠α=56°.故答案为:56.4、4.【解析】【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为4.【考点】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.5、36【解析】【分析】根据全等三角形的性质得出AB=AD,∠ABD=∠ADE,根据等腰三角形的性质和三角形内角和定理求出∠ABD=70°,求出∠DAE和∠ADE,再根据三角形内角和定理求出∠E即可.【详解】解:∵△ABC≌△ADE,∴AB=AD,∴∠ABD=∠ADB,∵∠BAD=40°,∴∠ABD=∠ADB=(180°-∠BAD)=70°,∵△ABC≌△ADE,∴∠ADE=∠ABD=70°,∵∠BAE=114°,∠BAD=40°,∴∠DAE=∠BAE-∠BAD=114°-40°=74°,∴∠E=180°-∠ADE-∠DAE=180°-70°-74°=36°,故答案为:36.【考点】本题考查了全等三角形的性质,等腰三角形的性质,三角形内角和定理等知识点,能熟记全等三角形的对应边相等和全等三角形的对应角相等是解此题的关键.三、解答题1、(1)见解析(2)见解析(3)不成立,正确的结论是BE-AB=AC,见解析【解析】【分析】(1)根据三角形内角和可得,利用角平分线得出,由等角对等边即可证明;(2)过点E作交AC于点F,根据平行线的性质可得,由等量代换、外角的性质及等角对等边可得,,依据全等三角形的判定和性质可得,,,结合图形,由线段间的数量关系进行等量代换即可证明;(3)(2)中的结论不成立,正确的结论是.过点A作交BE于点F,由平行线的性质及等量代换可得,根据等角对等边得出,由角平分线可得,结合图形根据各角之间的数量关系得出,由等角对等边可得,结合图形进行线段间的等量代换即可得出结果.(1)证明:∵,,∴,∵BD平分,∴,∴,∴;(2)证明:如图:过点E作交AC于点F,∴,∴,∴,,∴,∵AE是的平分线,∴,在和中,,∴,∴,,∴,∴;(3)解:(2)中的结论不成立,正确的结论是.理由如下:如图,过点A作交BE于点F,∴,∴,∴,∵AE是的外角平分线,∴,∵,∴,∴,∴,∴,∴.【考点】题目主要考查等腰三角形的判定和性质,全等三角形的判定和性质,利用角平分线进行角度的计算,平行线的性质,三角形内角和定理等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.2、(1)见详解;(2)成立,理由见详解;(3)见详解【解析】【分析】(1)根据直线,直线得,而,根据等角的余角相等得,然后根据“”可判断;(2)利用,则,得出,然后问题可求证;(3)由题意易得,由(1)(2)易证,则有,然后可得,进而可证,最后问题可得证.【详解】(1)证明:直线,直线,,,,,,在和中,,;解:(2)成立,理由如下:,,,在和中,,;(3)证明:∵△ABF和△ACF均为等边三角形,∴,∴∠BDA=∠AEC=∠BAC=120°,∴,∴,∴,∴,∵,∴,∴(SAS),∴,∴,∴△DFE是等边三角形.【考点】本题主要考查全等三角形的判定与性质及等边三角形的性质与判定,熟练掌握全等三角形的判定与性质及等边三角形的性质与判定是解题的关键.3、(1)证明见解析;(2)互相垂直,证明见解析【解析】【分析】(1)根据AAS推出△ACD≌△ABE,根据全等三角形的性质得出即可;(2)证Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根据等腰三角形的性质推出即可.【详解】(1)证明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,△ACD和△ABE中,∵∴△ACD≌△ABE(AAS),∴AD=AE.(2)猜想:OA⊥BC.证明:连接OA、BC,∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°.在Rt△ADO和Rt△AEO中,∵∴Rt△ADO≌Rt△AEO(HL).∴∠DAO=∠EAO,又∵AB=AC,∴OA⊥BC.4、(1)证明见解析;(2)=80°【解析】【分析】(1)利用已知条件和等腰三角形的性质证明,根据全等三角形的性质即可证明;(2)根据三角形内角和定理得∠B=50°,所以∠C=50°,在△ABC中利用三角形内角和定理即可求解.【详解】解:(1)证明:∵点D为BC的中点,∴BD=CD,∵,,∴∠DEB=∠DFC=90°在△BDE和△CDF中,∴,∴.(2)∵∴∠B=180°-(∠BDE+∠BED)=50°,∴∠C=50°,在△ABC中,=180°-(∠B+∠C)=80°,故=80°.【考点】本题考查等腰三角形的性质、全等三角形的判定与性质和三角形内角和定理,熟练掌握等腰三角形的性质并灵活应用是解题的关键.5、(1)见解析;(2)100°.【解析】【分析】(1)根据△ADE与△ABC都是等边三角形,得到AC=AB,AE=AD,∠DAE=∠BAC=60°,从而得到∠DAE+∠CAD=∠BAC+∠CAD,即∠CAE=∠BAD,利用SAS证得△ABD≌△ACE;(2)由△ABD≌△ACE,得到∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国船舶招聘面试题及答案
- 2025年放射卫生试题(附答案)
- 山东省菏泽市2024-2025学年高一上学期11月期中考试(A卷)地理试题
- 河北省部分地区2025-2026学年高二上学期9月阶段性测试语文试题
- 痛风病人护理试卷及答案
- 绵阳二诊化学试卷及答案
- 2025年湖北高升专考试题及答案
- 护士考试初级试题及答案
- 延展性电路制备-洞察与解读
- 部编版2025-2026学年一年级上册语文第三单元单元培优卷A卷(含答案)
- HR-1-04猎头管理办法
- 2023年中考语文备考之说明文阅读训练:《盲盒背后的“上瘾密码”》
- WH/T 42-2011演出场所安全技术要求第2部分:临时搭建演出场所舞台、看台安全技术要求
- GB/T 3811-2008起重机设计规范
- GB/T 27734-2011压力管道用聚丙烯(PP)阀门基本尺寸公制系列
- GB/T 20346.1-2006施肥机械试验方法第1部分:全幅宽施肥机
- GB/T 20056-2015滚动轴承向心滚针和保持架组件外形尺寸和公差
- GA/T 1068-2015刑事案件命名规则
- 浙江省宁波市镇海蛟川书院2022-2023七年级上学期数学期中试卷+答案
- 论文写作讲座课件
- 双减作业设计初中数学作业设计优秀案例
评论
0/150
提交评论