




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青岛版8年级数学下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、估计(
)A.在6和7之间 B.在5和6之间 C.在4和5之间 D.在3和4之间2、如图,有一块直角三角形纸片,两直角边,.现将直角边沿直线折叠,使它落在斜边上,且与重合,则的大小为(
)A.2cm B.3cm C.4.8cm D.5cm3、下列对△ABC的判断,不正确的是(
)A.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.若AB:BC:CA=1:2:,则△ABC是直角三角形C.若AB=BC,∠A=60°,则△ABC是等边三角形D.若AB=BC,∠C=50°,则∠B=50°4、无理数的绝对值是(
)A. B. C. D.25、有五根小木棒,其长度分别为7,15,24,25,现将它们摆成两个直角三角形,其中正确的是()A. B.C. D.6、的算术平方根是(
)A.9 B. C.3 D.7、下列命题中假命题是()A.有一个外角等于120°的等腰三角形是等边三角形B.等腰三角形的两边长是3和7,则其周长为17C.一边上的中线等于这条边的一半的三角形是直角三角形D.直角三角形的三条边的比是3:4:58、在3.14,,,π,,0,0.1001000100001…中,无理数有(
)A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、的算术平方根是______,的立方根是______.2、已知点A(a,1)与点A'(3,b)关于原点对称,则a+b=_____.3、=_____.4、如图,,点、分别在边、上,且,,点、分别在边、上,则的最小值是______.5、一个三角形的三边长均为整数.已知其中两边长为3和5,第三边长是不等式组的正整数解.则第三边的长为:______.6、在Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图1,D、E分别是AB和CB边上的点,把△BDE沿直线DE折叠,若点B落在AC边上的点F处,则CE的最小值是_______;(2)如图2,CG是AB边上的中线,将△ACG沿CG翻折后得到△HCG,连接BH,则BH的长为______.7、如图,边长为1的正六边形放置于平面直角坐标系中,边在轴正半轴上,顶点在轴正半轴上,将正六边形绕坐标原点顺时针旋转,每次旋转,那么经过第2022次旋转后,顶点的坐标为________.三、解答题(7小题,每小题10分,共计70分)1、【阅读材料】数列是一个古老的数学课题,我国对数列概念的认识很早,例如《易传•系辞》:“河出图,洛出书,圣人则之;两仪生四象,四象生八卦”.这是世界数学史上有关等比数列的最早文字记载.【问题提出】求等比数列1+a1+a2+a3+…+an的值(a>0,且a≠1,n是正整数,请写出计算过程).【等比数列】按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为an.所以,数列的一般形式可以写成:a1,a2,a3,…,an,….一般地,如果一个数列从第二项起,每一项与它前一项的比值等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用q表示.如:数列1,2,4,8,…为等比数列,其中a1=1,a2=2,公比为q=2.根据以上材料,解答下列问题:(1)等比数列3,9,27,…的公比q为_____,第5项是_____.【公式推导】如果一个数列a1,a2,a3,…,an…,是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…,=q.所以a2=a1•q,a3=a2•q=a1q•q=a1•q2,a4=a3•q=a1•q2=a1•q3,…(2)由此,请你填空完成等比数列的通项公式:an=a1•(_____).【拓广探究】等比数列求和公式并不复杂,但是其推导过程——错位相减法,构思精巧、形式奇特.欧几里得在《几何原本》中就给出了等比数列前n项和公式,而错位相减法则直到1822年才由欧拉在《代数学基础》中给出,时间相差两千多年.下面是小明为了计算1+2+22+…+22019+22020的值,采用的方法:设S=1+2+22+…+22019+22020①,则2S=2+22+…+22020+22021②,②-①得2S-S=S=22021-1,∴S=1+2+22+…+22019+22020=22021-1.【解决问题】(3)请仿照小明的方法求等比数列1+a1+a2+a3+…+an的值(a>0,且a≠1,n是正整数,请写出计算过程).【拓展应用】(4)计算25+252+253+…+25n的值为_____.(直接写出结果)2、解不等式组:.3、如图,已知Rt△ABC中,∠B=90°,∠A=30°,请用尺规作图法,在AC边上求作一点D,使BD=AC.(保留作图痕迹,不写作法)4、对于平面直角坐标系xOy中的图形W和点P(点P在图形W上),给出如下定义:若点,……,都在图形W上,且,那么称点,,……,是图形W关于点P的“等距点”,线段,,……,是图形W关于点P的“等距线段”.(1)如图1,已知点B(-2,0),C(2,0),A(0,a)()①判断:点B,C△ABC关于点O的“等距点”,线段OA,OB△ABC关于点O的“等距线段”;(填“是”或“不是”)②△ABC关于点O的两个“等距点”,分别在边AB,AC上,当相应的“等距线段”最短时,请在图1中画出线段,;(2)如图2,已知C(4,0),A(2,2),P(3,0),若点C,D是△AOC关于点P的“等距点”,求点D的坐标;(3)如图3,已知C(a,0)在x轴的正半轴上,.点P(x,0),△AOC关于点P的“等距点”恰好有四个,且其中一个点是点O,请直接写出点P横坐标的取值范围.(用含a的式子表示)5、如图,四边形ABCD是正方形,点E在BC延长线上,DF⊥AE于点F,点G在AE上,且∠ABG=∠E.求证:AG=DF.6、济南某社区为倡导健康生活,推进全民健身,去年购进A,B两种健身器材若干件.经了解,B种健身器材的单价是A种健身器材的1.5倍,用6000元购买A种健身器材比用3600元购买B种健身器材多15件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共60件,且B种健身器材的数量不少于A种健身器材的4倍,请你确定一种购买方案使得购进A,B两种健身器材的费用最少.7、已知与成正比例,且时.(1)试求与之间的函数表达式;(2)若点在这个函数图象上,求的值.-参考答案-一、单选题1、B【解析】【分析】根据题意可得,从而得到,即可求解.【详解】解:∵,∴,∴,即在5和6之间.故选:B【点睛】本题主要考查了无理数的估计,根据题意得到是解题的关键.2、B【解析】【分析】根据折叠的性质可得AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,利用勾股定理列式求出AB,从而求出BE,设CD=DE=x,表示出BD,然后在Rt△DEB中,利用勾股定理列式计算即可得解.【详解】解:由折叠的性质可得,AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,在Rt△ABC中,AB2=AC2+BC2=62+82=102,∴AB=10,∴BE=AB-AE=10-6=4,设CD=DE=x,则DB=BC-CD=8-x,在Rt△DEB中,由勾股定理,得x2+42=(8-x)2,解得x=3,即CD=3cm,故选:B.【点睛】本题考查了翻折变换的性质,以及勾股定理,熟记性质并表示出Rt△DEB的三边,然后利用勾股定理列出方程是解题的关键.3、D【解析】【分析】根据等腰三角形,等边三角形,直角三角形的判定以及三角形的内角和定理即可作出判断.【详解】解:A.若∠A:∠B:∠C=1:2:3,则∠A=30°,∠B=60°,∠C=90°,所以△ABC是直角三角形,故此选项正确,不符合题意;B.若AB:BC:CA=1:2:,则12+()2=22,那么这个三角形是直角三角形,故此选项正确,不符合题意;C.若AB=BC,∠A=60°,则∠A=∠C=60°,∠B=60°,所以△ABC是等边三角形,故此选项正确,不符合题意;D.若AB=BC,∠C=50°,则∠A=∠C=50°,∠B=80°,故此选项错误,符合题意.故选:D.【点睛】本题考查了等腰三角形的判定、直角三角形的判定以及等边三角形的判定.根据已知条件解出三角形中的角是解题的关键.4、B【解析】【分析】根据绝对值的定义来求解即可.【详解】解:无理数的绝对值是.故选:.【点睛】本题考查了算术平方根,无理数,实数的性质,正确理解负数的绝对值是正数是解答关键.5、D【解析】【分析】根据图中所给出的数,找出组成三角形的三边,并判断较小两边的平方和是否等于最大边的平方,每一个图判断两次即可.【详解】解:∵72=49,242=576,202=400,152=225,252=625,∴72+242=252,152+202≠242,152+202=252,∴A错误,B错误,C错误,D正确.故选:D.【点睛】本题考查了勾股定理的逆定理,解题的关键是注意是判断较小两边的平方和是否等于最大边的平方.6、C【解析】【分析】根据算术平方根的定义求解即可.【详解】解:∵,∴的算术平方根为3,故选:C.【点睛】本题考查算术平方根,会求一个数的算术平方根是解答的关键.7、D【解析】【分析】根据等边三角形的判定定理,等腰三角形的定义,直角三角形的判定,直角三角形的三边关系,逐项判定,即可求解.【详解】解:A、因为该等腰三角形的一个外角等于120°,所以它的一个内角等于60°,而有一个内角等于60°的等腰三角形是等边三角形,则该选项是真命题,不符合题意;B、若以3为腰,则等腰三角形的三边长是3、3、7,而,不能够够成三角形,则舍去;若以7为腰,则等腰三角形的三边长是3、7、7,则其周长为,则该选项是真命题,不符合题意;C、如图,在三角形ABC中,CD是AB边的中线,且,则CD=AD=BD,故∠A=∠ACD,∠B=∠BCD,所以∠A+∠B=∠ACD+∠BCD=∠ACB,所以∠ACB=90°,即三角形ABC是直角三角形,则该选项是真命题,不符合题意;D、例如直角三角形的三条边的长是,但不满足三条边的比是3:4:5,则该选项是假命题,符合题意;故选:D【点睛】本题主要考查了等边三角形的判定定理,等腰三角形的定义,直角三角形的判定,直角三角形的三边关系,熟练掌握等边三角形的判定定理,等腰三角形的定义,直角三角形的判定,直角三角形的三边关系是解题的关键.8、C【解析】【分析】根据无理数是无限不循环小数求解【详解】解:,故无理数有:π,,0.1001000100001…,共个,故选:C.【点睛】本题考查了对实数分类的理解,掌握无理数的定义,准确求得一个数的立方根是解决本题的关键.二、填空题1、
2
2【解析】【分析】根据算术平方根、立方根的意义,即可解答.【详解】解:∵,,∴的算术平方根是2;∵,,∴的立方根是2.故答案为:2,2.【点睛】本题考查了平方根与立方根,正确理解平方根与立方根的意义是解题的关键.2、﹣4【解析】【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】解:∵点A(a,1)与点A'(3,b)关于原点对称,∴a=-3,b=-1,则a+b=-3-1=-4.故答案为:-4.【点睛】本题主要考查了关于原点对称点的性质,正确记忆横纵坐标符号关系是解题关键.3、【解析】【分析】根据二次根式乘除运算法则计算即可.【详解】原式=故答案为:.【点睛】本题考查二次根式的乘除混合运算,可以先算乘除再化简,也可以先化简以后再计算.4、【解析】【分析】作关于的对称点,作关于的对称点,连接,即为的最小值,易得为等边三角形,为等边三角形,,再根据勾股定理求解.【详解】解:作关于的对称点,作关于的对称点,连接,即为的最小值.根据轴对称的定义可知:,,,,为等边三角形,为等边三角形,,在中,,.故答案为:.【点睛】本题考查了最短路径问题,等边三角形的判定和性质,勾股定理,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.5、7【解析】【分析】先利用一元一次不等式组的解法确定出正整数解,然后利用三角形的三边关系来求解.【详解】解:解得,所以正整数解是、、9.三角形的其中两边长为和,,即,所以只有符合.故答案为:.【点睛】本题考查了三角形三边关系和一元一次不等式的整数解.解题的关键是求解不等式组求出它的正整数解.6、
【解析】【分析】(1)当点B与点A重合时,CE最小,设CE=x,由勾股定理得,代入数值求出x值即可;(2)根据勾股定理求出AB,利用中线的性质得到CG=AG,过点G作GD⊥AC于D,由翻折得,求出EH,过点G作GF⊥BH,证明四边形GEHF是矩形,得到GF=EH,勾股定理求出BF,由BH=2BF求出答案.【详解】解:(1)当点B与点A重合时,CE最小,如图,设CE=x,则BE=8-x,由折叠得AE=BE=8-x,∵∠ACB=90°,,∴,解得x=,即CE的最小值是,(2)∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8.∴,∵CG是AB边上的中线,∴,AG=BG=5,∴CG=AG,过点G作GD⊥AC于D,则,∴DG=4,由翻折得,∴,∴,得,过点G作GF⊥BH,∵GH=AG=BG,∴FH=BF,∠HGF=∠BGF,∵∠AGC=∠HGC,∴∠CGF=90°=∠GEH=∠GFH,∴四边形GEHF是矩形,∴GF=,∴∴BH=2BF=.故答案为:,.【点睛】此题考查了翻折的性质,勾股定理的应用,等腰三角形三线合一的性质,矩形的判定定理及性质定理,直角三角形斜边中线的性质,熟记各知识点并应用是解题的关键.7、【解析】【分析】连接AD、BD,由勾股定理可得BD,求出∠OFA=30°,得到OA的值,进而求得OB的值,得到点D的坐标,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点的坐标.【详解】解:如图,连接AD,BD,在正六边形ABCDEF中,,∴,在中,,∴,∴,∴,∴,∵将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,∴6次一个循环,∵,∴经过第2022次旋转后,顶点D的坐标与第一象限中D点的坐标相同,故答案为:.【点睛】此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D坐标的规律.三、解答题1、(1)3,243;(2)qn-1;【解决问题】;【拓展应用】【解析】【分析】(1)根据等比数列的公比的定义求解即可;(2)探究规律利用规律解决问题;【解决问题】设S=1+a1+a2+a3+…+an,则aS=a1+a2+a3+…+an+1,两式相减即可求得;【拓展应用】设S=25+252+253+…+25n,则25S=252+253+…+25n+1,两式相减即可求得.【详解】解:(1)等比数列3,9,27,…的公比q为3,第四项为27×3=81,第五项为81×3=243,故答案为:3,243.(2)如果一个数列a1,a2,a3,…,an…,是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…,=q.所以a2=a1•q,a3=a2•q=a1q•q=a1•q2,a4=a3•q=a1•q2=a1•q3,…an=a1.qn-1.故答案为:qn-1.(3)设S=1+a1+a2+a3+…+an①,则aS=a1+a2+a3+…+an+1②,②-①得aS-S=(a-1)S=an+1-1,∴.(4)设S=25+252+253+…+25n,∴25S=252+253+…+25n+1,∴25S-S=25n+1-25,∴.故答案为:.【点睛】本题考查了新定义及其运算,等比数列等知识,解题的关键是理解题意,利用类比思想解决问题.2、【解析】【分析】分别求两个不等式的解集,然后求出公共的解集即可;【详解】解:解不等式①得:解不等式②得:∴不等式组的解为.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确的计算求解.3、见解析【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半知D为AC的中点,故只需作AC的垂直平分线即可.【详解】解:如图,点D即为所求作.【点睛】本题考查尺规作图-作线段垂直平分线,涉及直角三角形斜边上的中线性质,熟练掌握线段垂直平分线的作图方法以及直角三角形斜边上的中线性质是解答的关键.4、(1)①是;不是;②见解析(2)D(2,0)或(3,1)(3)<x<【解析】【分析】(1)①根据题意可得,,结合题中定义即可得出结果;②根据题意及题中“等距点”可得,由相应的“等距线段”最短时,过点O分别作,,此时“等距线段”最短,据此作图即可得;(2)根据勾股定理及其逆定理可得是等腰直角三角形,,结合题意可得:,,结合图形即可得出点的坐标;(3)分两部分进行讨论:①当时,点P为线段OC的中点;②当时,;结合题中“等距点”的定义及含角直角三角形的性质依次分析即可得出点P横坐标的取值范围.(1)解:①∵点B(-2,0),C(2,0),A(0,a)(),∴,,∴点B,C是关于点O的“等距点”,线段OA,OB不是关于点O的“等距线段”;故答案为:是;不是;②∵关于点O的两个“等距点”,分别在边AB,AC上,∴,当相应的“等距线段”最短时,过点O分别作,,此时“等距线段”最短,如图所示:(2)解:如图所示,∵C(4,0),A(2,2),∴,∵,∴是等腰直角三角形,∴,∵P(3,0),∴,∴∴,∴D(2,0)或(3,1);(3)解:①当时,点P为线段OC的中点,∴,∴点O、C是关于点P的“等距点”,过点P作于点B,截取,连接PD,如图所示:则,∵,∴,∴的关于点P的“等距点”有两个在OC上,有一个在AC上,∵关于点P的“等距点”恰好有四个,且其中一个是点O,∴,即;②当时,,,则的关于点P的“等距点”有两个在OC上,有一个在AC上,∵关于点P的“等距点”恰好有四个,且其中一个是点O,,即;综上可得:,∴点P横坐标的取值范围为:.【点睛】题目主要考查坐标系中两点间的距离,直线外一点到直线的垂线段最短,勾股定理,等腰三角形的判定和性质,含角直角三角形的性质等,理解题意,作出相应辅助线是解题关键.5、见解析【解析】【分析】根据正方形的性质得到,,,再证明,,然后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单招服装考试题及答案
- 大学造型基础考试题及答案
- 中国烧碱氧化物项目创业投资方案
- 大学电磁理论考试题及答案
- 老师招聘协议书
- 船厂起重工考试题及答案
- 年会舞协议书
- 急救药品考试试题及答案
- 机械员考试试题及答案
- 回转窑考试试题及答案
- 颅内动脉瘤血管畸形影像诊断
- 韩餐服务员培训
- 数字化解决方案设计师职业技能竞赛参考试题库(含答案)
- 监理管理交底
- 传染病监测预警与应急指挥信息平台建设需求
- JGJT46-2024《施工现场临时用电安全技术标准》条文解读
- 锑矿合同范本
- 中医适宜技术操作规程技术操作规范
- 新入团团课培训
- 学校实验室危险化学品安全工作检查记录表
- 2024年度云南省高校教师资格证之高等教育心理学真题练习试卷A卷附答案
评论
0/150
提交评论