




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西延安市实验中学7年级数学下册第五章生活中的轴对称同步测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下列垃圾分类的标识中,是轴对称图形的是()A.①② B.③④ C.①③ D.②④2、下列说法正确的是()A.如果两个三角形全等,则它们必是关于某条直线成轴对称的图形B.如果两个三角形关于某条直线成轴对称,那么它们是全等三角形C.等腰三角形是关于一条边上的中线成轴对称的图形D.一条线段是关于经过该线段中点的直线成轴对称图形3、下面是福州市几所中学的校标,其中是轴对称图形的是()A. B. C. D.4、点P(5,-3)关于y轴的对称点是()A.(-5,3) B.(-5,-3) C.(5,3) D.(5,-3)5、下列图形中,是轴对称图形的是()A. B. C. D.6、北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A. B. C. D.7、放风筝是我国人民非常喜爱的一项户外娱乐活动,下列风筝剪纸作品中,不是轴对称图形的是()A. B.C. D.8、甲骨文是我国的一种古代文字,下列甲骨文中,不是轴对称的是()A. B. C. D.9、如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是()A. B. C. D.10、下面四个图形是轴对称图形的是()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,将长方形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠BGE=126°,则∠EFG的度数为______.2、如图,与关于直线对称,则的度数为_____.3、如图,点D、
E分别在ABC的AB、AC边上,沿DE将ADE翻折,点A的对应点为点,∠EC=α,∠DB=β,且α<β,则∠A等于________(用含α、β表示).4、已知,如图,,点M,N分别是边OA,OB上的定点,点P,Q分别是边OB,OA上的动点,记,,当最小时,则______.5、汉字中、日、田等都可看作是轴对称图形,请你再写出一个这样的汉字:______.6、正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有______种.7、如图,在3×3的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形(包括网格)构成一个轴对称图形,那么涂法共有________种.8、如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=70°,则∠BDF的度数为____.9、在“线段、钝角、三角形、等腰三角形、圆”这五个图形中,是轴对称图形的有____个.10、如图,将长方形沿折叠,点落在边上的点处,点落在点处,若,则等于_______(用含的式子表示).三、解答题(6小题,每小题10分,共计60分)1、已知,在如图所示的网格中建立平面直角坐标系后,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(2,4).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)借助图中的网格,请只用直尺(不含刻度)完成以下要求:(友情提醒:请别忘了标注字母!)①在第一象限内找一点P,使得P到AB、AC的距离相等,且PA=PB;②在x轴上找一点Q,使得△QAB的周长最小,则Q点的坐标(_____,_____).2、已知点在内.如图,点关于射线的对称点是,点关于射线的对称点是,连接、、.(1)若,则;(2)若,连接,请说明当为多少度时,.3、如图,在数轴上A点表示数a,B点表示数b,C点表示数c,已知数b是最小的正整数,且a、c满足.(1)a=_____,b=______,c=______;(2)若将数轴折叠,使得点A与点C重合,则点B与数______表示的点重合;(3)在(1)的条件下,数轴上的A,B,M表示的数为a,b,y,是否存在点M,使得点M到点A,点B的距离之和为6?若存在,请求出y的值;若不存在,请说明理由.(4)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,求AB、AC、BC的长(用含t的式子表示).4、如图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M、N为格点;(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点;(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.5、如图,边长为1的正方形网格中,△ABC的三个顶点A、B、C都在格点上.(1)画出△ABC关于x轴的对称图形△DEF(其中点A、B、C的对称点分别是D、E、F),则点D坐标为.(2)在y轴上找一点P,使得PA+PC最短,请画出点P所在的位置,并写出点P的坐标.6、在下图给出一个图案的左半部分,其中虚线是这个图案的对称轴.请你画出这个图案的右半部分,使它组成一个完整的图案.-参考答案-一、单选题1、B【详解】解:图③和④是轴对称图形,故选:B.【点睛】本题考查了轴对称图形,熟记轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.2、B【分析】根据全等三角形的定义以及轴对称的性质可判断选项A和B;根据等腰三角形的性质可判断选项C;根据线段的性质可判断选项D.【详解】解:A.如果两个三角形全等,则它们不一定关于某条直线成轴对称的图形,故本选项不合题意;B.如果两个三角形关于某条直线成轴对称,那么它们是全等三角形,说法正确,故本选项符合题意;C.等腰三角形是以底边中线所在直线为对称轴的轴对称图形或者说等腰三角形被中线所在直线分成的两个三角形成轴对称,故本选项不合题意;D.一条线段是关于经过该线段中点且和线段垂直的直线成轴对称的图形,故本选项不合题意;故选:B.【点睛】本题考查了轴对称的性质,全等三角形的性质,线段垂直平分线的性质,等腰三角形的性质,关键是掌握性质进行逐一判断.3、A【分析】结合轴对称图形的概念进行求解即可.【详解】A、是轴对称图形,本选项符合题意;B、不是轴对称图形,本选项不合题意;C、不是轴对称图形,本选项不合题意;D、不是轴对称图形,本选项不合题意.故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、B【分析】根据两点关于y轴对称的特征是两点的横坐标互为相反数,纵坐标不变即可求出点的坐标.【详解】解:∵所求点与点P(5,–3)关于y轴对称,∴所求点的横坐标为–5,纵坐标为–3,∴点P(5,–3)关于y轴的对称点是(–5,–3).故选B.【点睛】本题考查两点关于y轴对称的知识;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标相同.5、A【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:A.【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.6、A【分析】利用轴对称图形的概念进行解答即可.【详解】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.【点睛】本题主要是考查了轴对称图形的概念,判别轴对称图形的关键是找对称轴.7、B【分析】根据轴对称图形的概念求解.在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴.【详解】解:A、是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项符合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意.故选:B.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8、D【分析】根据轴对称图形的概念分别判断得出答案.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意;故选:D.【点睛】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.9、C【分析】将一个图形沿着一条直线翻折后,两侧能够完全重合的图形是轴对称图形,根据定义判断即可.【详解】A、是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、是轴对称图形,故选:C.【点睛】此题考查轴对称图形的定义,正确理解图形的特点是解题的关键.10、B【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据此概念进行分析.【详解】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:B.【点睛】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.二、填空题1、63°【分析】由平行线的性质可得∠DEG=∠BGE=126°,再由折叠的性质可得∠DEF=63°,再由平行线的性质可得∠EFG=DEF=63°【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEG=∠BGE=126°,∠DEF=∠EFG,由折叠的性质可得:∠DEF=∠DEG=63°,∴∠EFG=63°.故答案为:63°.【点睛】本题考查了平行线的性质以及折叠的性质,注意掌握折叠前后图形的对应关系是解此题的关键.2、121°【分析】根据轴对称的性质,轴对称图形全等,则∠A=∠A′,∠B=∠B′,∠C=∠C′,再根据三角形内角和定理即可求得.【详解】解:∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∴∠A=∠A′=36°,∠B=∠B′=23°,∴∠C=180°−36°−23°=121°.故答案为:121°.【点睛】本题考查了轴对称图形的性质,全等的性质,三角形内角和定理,理解轴对称图形的性质是解题的关键.3、【分析】根据翻转变换的性质得到,,根据三角形的外角的性质计算,即可得到答案.【详解】解:∵,∴由折叠的性质可知,,,设,∵,∴,解得:,∴,,故答案为:.【点睛】本题考查的是翻转变换的性质,三角形的外角的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4、60°度【分析】作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,根据三角形的外角的性质和平角的定义即可得到结论.【详解】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,∴∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∴∠QPN=(180°﹣α)=∠AOB+∠MQP=30°+(180°﹣β),∴180°﹣α=60°+(180°﹣β),∴β﹣α=60°,故答案为:60.【点睛】本题考查轴对称﹣最短路线问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用轴对称知识作出辅助线解决问题.5、一(答案不唯一)【分析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此解答即可.【详解】解:由轴对称图形的定义可得:一、二、三、甲、出、本、王、平都是轴对称图形.故答案为:一(答案不唯一).【点睛】此题主要考查了轴对称图形,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.6、4【分析】利用轴对称图形定义进行补图即可.【详解】解:如图所示:,共4种,故答案为:4.【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.7、5【分析】直接利用轴对称图形的性质分析得出答案.【详解】解:如图所示:所标数字之处都可以构成轴对称图形.故答案为:5.【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.8、40°【分析】利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.【详解】解:∵DE∥BC,∴∠ADE=∠B=70°,由折叠的性质可得∠ADE=∠EDF=70°,∴∠BDF=180°﹣∠ADE-∠EDF=40°,故答案为:40°.【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.9、【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据轴对称图形的概念求解即可.【详解】解:根据轴对称图形的定义可知:线段、钝角、等腰三角形和圆都是轴对称图形.而三角形不一定是轴对称图形.故答案为:4.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、【分析】根据折叠得出∠DEF=∠HEF,∠EFG=∠EFC,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,∠BFE=∠DEF,代入即可求出∠EFG,进而求出∠BFG.【详解】解:∵将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,∴∠DEF=∠HEF,∠EFG=∠EFC,∵∠AEH=m°,∴∠DEF=∠HEF=(180°-∠AEH)=(180°-m°),∵四边形ABCD是长方形,∴AD∥BC,EH∥FG,∴∠DEF+∠EFC=180°,∠BFE=∠DEF=(180°-m°),∴∠EFG=∠EFC=180°-(180°-m°)=90°+m°,∴∠BFG=∠EFG-∠BFE=90°+m°-(180°-m°)=m°,故答案为:m.【点睛】本题考查了平行线的性质,折叠的性质等知识点,根据平行线的性质求出∠BFE=∠DEF和∠DEF+∠EFC=180°是解此题的关键.三、解答题1、(1)见详解;(2)①见详解;②2,0.【分析】(1)根据题意画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始,连接这些对称点,就得到原图形的轴对称图形;(2)①由题意作∠BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;②由题意作点B关于x轴对称的点B',连接AB',交x轴于Q,则点Q即为所求.根据直线AB'的解析式即可得出点Q的坐标.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)①如图所示,作∠BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;②如图所示,作点B关于x轴对称的点B',连接AB',交x轴于Q,则点Q即为所求,∵A(1,1),B'(4,-2),∴可设直线AB'为y=kx+b,则,解得:,∴y=-x+2,当y=0时,-x+2=0,解得x=2,此时点Q的坐标为(2,0).故答案为:2,0.【点睛】本题主要考查利用轴对称进行作图,解决问题的关键是掌握角平分线的性质,中垂线的性质以及待定系数法求一次函数解析式,解题时注意两点之间,线段最短.2、(1);(2)【分析】(1)由题意依据轴对称可得OG=OP,OM⊥GP,即可得到OM平分∠POG,ON平分∠POH,进而得出∠GOH=2∠MON;(2)根据题意可知当∠MON=90°时,∠GOH=180°,此时点G,O,H在同一直线上,可得GH=GO+HO=10.【详解】解:(1)∵点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,∴OG=OP,OM⊥GP,∴OM平分∠POG,同理可得ON平分∠POH,∴∠GOH=2∠MON=2×50°=100°,故答案为:100°;(2)∵,∴,当时,,∴点,,在同一直线上,∴.【点睛】本题主要考查轴对称图形相关,熟练掌握角平分线性质以及轴对称图形的性质是解题的关键.3、(1)-2,1,7;(2)4;(3)存在这样的点M,对应的y=2.5或y=-3.5;(4)3t+3,5t+9,2t+6.【分析】(1)根据非负数的性质得出,解方程可求,根据数b是最小的正整数,可得b=1即可;(2)先求出折点表示的是,然后点B到折点的距离,利用有理数加法即可出点B对称点;(3)由题意知AB=3,点M在AB之间,AM+BM=3<6,分两种情况讨论M在AB之外的情况第一种情况,当M在A点左侧时,由MA+MB=MA+MA+AB=6,第二种情况,当M在B点右侧时由MA+MB=MB+MB+AB=6,解方程即可;(4)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可.【详解】解:(1)∵,且,∴,解得,∵数b是最小的正整数,∴b=1,∴,故答案为:-2,1,7;(2)将数轴折叠,使得点A与点C重合,AC中点D表示的数为,点B表示1,BD=2.5-1=1.5,∴点B对应的数是,2.5+1.5=4,故答案为:4;(3)由题意知AB=3,M在AB之间,AM+BM=3<6,分两种情况讨论M在AB之外的情况第一种情况,当M在A点左侧时由MA+MB=MA+MA+AB=6,得MA=1.5∴y<-2,-2-y=1.5∴y=-3.5;第二种情况,当M在B点右侧时由MA+MB=MB+MB+AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 节假日反假知识培训课件
- 企业代缴社保及福利待遇综合服务合同
- 教师招聘之《小学教师招聘》过关检测试卷及答案详解(必刷)
- 教师招聘之《小学教师招聘》综合提升试卷含完整答案详解【典优】
- 2025年教师招聘之《幼儿教师招聘》考前冲刺模拟题库附参考答案详解(培优b卷)
- 教师招聘之《小学教师招聘》模拟题库(培优b卷)附答案详解
- 2025年六五普法测试试题及答案
- 幼儿园廉政教育月活动方案
- 部队组织生活自我评价及整改措施
- 教师招聘之《小学教师招聘》试题(得分题)【a卷】附答案详解
- 《竹节人 》第二课时ppt
- 社会责任程序文件
- 工程建设法规(全套课件405P)
- 新概念第一册Lesson-65-66练习题
- 固体物理(黄昆)第一章PPT
- 2023年重庆大学入学考试英语一本科
- 铁路公司招聘干部试题
- GB/T 1770-2008涂膜、腻子膜打磨性测定法
- 第17课-我是浙江人课件
- 税务尽职调查报告(参考)
- 初中七年级上《综合实践》活动课程课件
评论
0/150
提交评论