




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数)是关于x的方程,则它的根的情况是(
)A.有一个实根 B.有两个不相等的实数根 C.有两个相等的实数根 D.没有实数根2、一个圆柱体钢块,正中央被挖去了一个长方体孔,其俯视图如图所示.则此圆柱体钢块的主视图可能是下列选项中的(
)A. B. C. D.3、一元二次方程配方后可化为(
)A. B.C. D.4、图,在△ABC中,AB=AC,四边形ADEF为菱形,O为AE,DF的交点,S△ABC=8,则S菱形ADEF=()A.4 B.4 C.4 D.45、在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()A. B.C. D.6、若m,n是方程x2-x-2022=0的两个根,则代数式(m2-2m-2022)(-n2+2n+2022)的值为(
)A.2023 B.2022 C.2021 D.2020二、多选题(6小题,每小题2分,共计12分)1、下列命题中不是真命题的是(
)A.两边相等的平行四边形是菱形B.一组对边平行一组对边相等的四边形是平行四边形C.两条对角线相等的平行四边形是矩形D.对角线互相垂直且相等的四边形是正方形2、不能说明△ABC∽△A’B’C’的条件是(
)A.或 B.且C.且 D.且3、平行四边形ABCD的对角线相交于点O,分别添加下列条件使得四边形ABCD是矩形的条件有(
)是菱形的条件有(
)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO4、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是(
)A. B. C.3 D.55、如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论中正确的是(
)A.S△ADB=S△ADC;B.当0<x<3时,y1<y2;C.如图,当x=3时,EF=;D.当x>0时,y1随x的增大而增大,y2随x的增大而减小.6、在直角坐标系中,已知点A(6,﹣3),以原点O为位似中心,相似比为,把线段OA缩小为OA′,则点A′的坐标为(
)A.(﹣2,﹣1) B.(﹣2,1) C.(2,1) D.(2,﹣1)第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、如图,在中,,点D是的中点,过点D作,垂足为点E,连接,若,,则________.2、如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,4)也在此函数的图象上,则a=_____.3、如图,已知在平面直角坐标系中,直线分别交轴,轴于点和点,分别交反比例函数,的图象于点和点,过点作轴于点,连结.若的面积与的面积相等,则的值是_____.4、若,则________.5、如图,矩形ABCD中,AB=6,BC=8,对角线BD的垂直平分线EF交AD于点E、交BC于点F,则线段EF的长为__.6、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_____.(只填序号)7、关于的一元二次方程的一个根是2,则另一个根是__________.8、如图,在长方形ABCD中,AD=8,AB=6,点E为线段DC上一个动点,把△ADE沿AE折叠,使点D落在点F处,若△CEF为直角三角形时,则DE的长为___.四、解答题(6小题,每小题10分,共计60分)1、已知,AB=18,动点P从点A出发,以每秒1个单位的速度向点B运动,分别以AP、BP为边在AB的同侧作正方形.设点P的运动时间为t.(1)如图1,若两个正方形的面积之和,当时,求出的大小;(2)如图2,当取不同值时,判断直线和的位置关系,说明理由;(3)如图3,用表示出四边形的面积.2、如图,矩形ABCD中,AB=2cm,BC=3cm,点E从点B沿BC以2cm/s的速度向点C移动,同时点F从点C沿CD以1cm/s的速度向点D移动,当E,F两点中有一点到达终点时,另一点也停止运动.当△AEF是以AF为底边的等腰三角形时,求点E运动的时间.3、安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:(1)求与之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?4、如图,Rt△ABO的顶点A是反比例函数的图象与一次函数的图象在第二象限的交点,AB⊥x轴于点B,且.(1)求反比例函数和一次函数的解析式;(2)求一次函数与反比例函数图象的两个交点A,C的坐标.5、今年忠县柑橘喜获丰收,某果园销售的柑橘“忠橙”和“爱媛”很受消费者的欢迎,“忠橙”售价80元/箱,“爱媛”售价60元/箱.在11月第一周“忠橙”的销量比“爱媛”的销量多100箱,且这两种柑橘的总销售额为50000元.(1)在11月第一周,该果园“忠橙”和“爱媛”的销量各为多少箱?(2)为了扩大销售,11月第二周“忠橙”售价降价,销量比第一周培加了,“爱媛”售价不变,销量比第一周增加了,结果这两种相橘第二周的总销售额比第一周的总销售额增加了,求的值6、已知关于的方程有实根.(1)求的取值范围;(2)设方程的两个根分别是,,且,试求的值.-参考答案-一、单选题1、B【解析】【分析】将按照题中的新运算方法展开,可得,所以可得,化简得:,,可得,即可得出答案.【详解】解:根据新运算法则可得:,则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.【考点】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根的判别式时,含有参数的一元二次方程要尤其注意各项系数的符号.2、C【解析】【分析】主视图是从物体正面看所得到的图形.几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.【详解】解:此圆柱体钢块的主视图可能是:故选:C.【考点】本题考查简单组合体的三视图,画三视图时注意“长对正,宽相等,高平齐”,被其他部分遮挡而看不见的部分的轮廓线化成虚线.3、B【解析】【分析】根据题意直接对一元二次方程配方,然后把常数项移到等号右边即可.【详解】解:根据题意,把一元二次方程配方得:,即,∴化成的形式为.故选:B.【考点】本题考查配方法解一元二次方程,注意掌握配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4、C【解析】【分析】根据菱形的性质,结合AB=AC,得出DF为△ABC的中位线,DF∥BC,,从而得出AE为△ABC的高,得出,再根据菱形的面积公式,即可得出菱形的面积.【详解】解:∵四边形ADEF为菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴,,,,,∴CF=EF,DE=DB,,,∴DF∥BC,,,,,,,即,,故C正确.故选:C.【考点】本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF为△ABC的中位线,是解题的关键.5、A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选A.【考点】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.6、B【解析】【详解】解:∵m、n是方程x2-x-2022=0的两个根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【考点】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此题的关键.二、多选题1、ABD【解析】【分析】利用平行四边形、矩形、菱形及正方形的判定方法分别判断即可.【详解】A选项:有一组邻边相等的平行四边形是菱形,故原命题错误,是假命题,符合题意;B选项:一组对边平行且相等的四边形是平行四边形,故原命题错误,是假命题,符合题意;C选项:两条对角线相等的平行四边形是矩形,故原命题正确,是真命题,不符合题意;D选项:两条对角线互相垂直且相等的平行四边形是正方形,故原命题错误,是假命题,符合题意.故选:ABD.【考点】考查了平行四边形、菱形、矩形和正方形的判定,解题关键是熟练掌握特殊四边形的判定方法.2、ABD【解析】【分析】根据相似三角形的判定方法求解即可.【详解】解:A、或,不能判定,符合题意;B、且,不能判定,符合题意;C、且,能判定,不符合题意;D、且,不能判定,符合题意.故选:ABD.【考点】此题考查了相似三角形的判定方法,解题的关键是熟练掌握相似三角形的判定方法.相似三角形的判定方法:两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似;两角对应相等的两个三角形相似.3、AEBCD【解析】【分析】因为四边形ABCD是平行四边形,要成为矩形加上一个角为直角或对角线相等即可;要使其成为菱形,加上一组邻边相等或对角线垂直均可.【详解】A选项:∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形.(有一个角是直角的平行四边形是矩形)B选项:∵AC⊥BD,四边形ABCD是平行四边形,∴四边形ABCD是菱形.(对角线互相垂直的平行四边形是菱形)C选项:∵AB=BC,四边形ABCD是平行四边形,∴四边形ABCD是菱形.(邻边相等的平行四边形是菱形)D选项:如图:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴▱ABCD是菱形;E选项:∵AO=DO,四边形ABCD是平行四边形,∴AC=BD,∴四边形ABCD是矩形.(对角线互相平分且相等的平行四边形是矩形)故选:AE,BCD.【考点】考查了菱形和矩形的判定,解题关键是掌握平行四边形的性质和菱形、矩形的判定方法.4、AC【解析】【分析】先解出一元二次方程,再根据勾股定理计算即可;【详解】,,∴或,当2、3是直角边时,斜边;∵,∴3可以是三角形斜边;故选AC.【考点】本题主要考查了一元二次方程的求解、勾股定理,准确计算是解题的关键.5、ACD【解析】【分析】对于直线解析式,分别令x与y为0求出y与x的值,确定出A与B坐标,利用AAS得到三角形OBA与三角形CDA全等,利用全等三角形对应边相等得到,确定出C坐标,代入反比例解析式求出k的值,确定出反比例解析式,由图象判断时x的范围,以及与的增减性,把分别代入直线与反比例解析式,相减求出EF的长,即可做出判断.【详解】解:对于直线,令,得到;令,得到,,,即,,在和中,,,,(同底等高三角形面积相等),选项A正确;,把C点坐标代入反比例解析式得:,即,由函数图象得:当时,,选项B错误;当时,,,即,选项C正确;当时,随x的增大而增大,随x的增大而减小,选项D正确.故选:ACD.【考点】此题考查了反比例函数与一次函数的交点,涉及的知识有:一次函数与坐标系的交点,待定系数法确定反比例函数解析式,坐标与图形性质以及反比例函数的性质,熟练掌握函数的性质是解本题的关键.6、BD【解析】【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k解答.【详解】解:∵点A的坐标为(−6,3),以原点为位似中心将△ABO缩小,位似比为,∴点A的对应点的坐标为:(−6×,3×)或(−6×(−),3×(−)),即(−2,1)或(2,−1),故选:BD.【考点】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.三、填空题1、3【解析】【分析】根据直角三角形的性质得到AB=10,利用勾股定理求出AC,再说明DE∥AC,得到,即可求出DE.【详解】解:∵∠ACB=90°,点D为AB中点,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案为:3.【考点】本题考查了直角三角形的性质,勾股定理,平行线分线段成比例,解题的关键是通过平行得到比例式.2、3【解析】【分析】根据反比例函数的几何意义,可得,从而得到,再将点P(a,4)代入解析式,即可求解.【详解】解:∵点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,∴,∵△OAB的面积为6.∴,即,∴反比例函数的解析式为,∵点P(a,4)也在此函数的图象上,∴,解得:.故答案为:3【考点】本题主要考查了反比例函数的几何意义,反比例函数的图象和性质,熟练掌握反比例函数的几何意义,反比例函数的图象和性质,利用数形结合思想解答是解题的关键.3、2.【解析】【分析】过点作轴于.根据k的几何意义,结合三角形面积之间的关系,求出交点D的坐标,代入即可求得k的值.【详解】如图,过点作轴于.把y=0代入得:x=2,故OA=2由反比例函数比例系数的几何意义,可得,.∵,
∴,∴.易证,从而,即的横坐标为,而在直线上,∴∴.故答案为2【考点】本题是一次函数与反比例函数的交点问题,主要考查了一次函数和反比例函数的图象与性质,反比例函数“k“的几何意义,一次函数图象与反比例函数图象的交点问题,关键是根据两个三角形的面积相等列出k的方程.4、【解析】【分析】根据比例的基本性质进行化简,代入求职即可.【详解】由可得,,代入.故答案为.【考点】本题主要考查了比例的基本性质化简,准确观察分析是解题的关键.5、【解析】【分析】根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出EF即可.【详解】解:如下图,∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴,∴,解得,OF,∵四边形ABCD是矩形,∴ADBC,∠A=90°,∴∠EDO=∠FBO,∵EF是BD的垂直平分线,∴BO=DO,EF⊥BD,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴EF=2OF,故答案为:.【考点】本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,解题的关键是掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义.6、②【解析】【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解.【详解】解:即,构造如图②中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.故答案为②.【考点】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.7、-3【解析】【分析】由题意可把x=2代入一元二次方程进行求解a的值,然后再进行求解方程的另一个根.【详解】解:由题意把x=2代入一元二次方程得:,解得:,∴原方程为,解方程得:,∴方程的另一个根为-3;故答案为-3.【考点】本题主要考查一元二次方程的解及其解法,熟练掌握一元二次方程的解及其解法是解题的关键.8、或8或或【解析】【分析】当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如答图1所示.先利用勾股定理计算出AC=10,根据折叠的性质得∠AFE=∠D=90°,设DE=x,则EF=x,CE=6-x,然后在Rt△CEF中运用勾股定理可计算出x即可.②当点F落在AB边上时,如答图2所示.此时四边形ADEF为正方形,得出DE=AD=8.③当点F落在BC边上时,利用勾股定理即可解决问题;④如图4中,当点F在CB的延长线上时,根据勾股定理列出方程求解即可.【详解】解:∵四边形ABCD是矩形,∴∠D=∠B=90°,CD=AB=6,,当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,F落在AC上,如图1所示.由折叠的性质得:EF=DE,AF=AD=8,设DE=x,则EF=x,CE=6-x,在Rt△CEF中,由勾股定理得:∵EF2+CF2=CE2,∴x2+22=(6-x)2,解得x=,∴DE=;②当点F落在AB边上时,如图2所示.此时ADEF为正方形,∴DE=AD=8.③如图4,当点F落在BC边上时,易知BF,设DE=EF=x,在Rt△EFC中,,,,④如图3中,当点F在CB的延长线上时,设DE=EF=x,则BF,在Rt△CEF中,,解得x=,综上所述,BE的长为或8或或.【考点】本题考查了折叠的性质、矩形的性质、勾股定理、正方形的判定与性质等知识;熟练掌握折叠和矩形的性质是解决问题的关键.四、解答题1、(1);(2),理由见解析;(3)【解析】【分析】(1)由题意,,,当时,,,然后求出两个正方形面积之和即可;(2)延长交于,根据正方形的性质得到AP=PC,PE=PB,∠APE=∠CPB=90°,在证的△APE≌△PBC,得到,在运用角的运算即可;(3)延长,交于点,可得四边形EDBF的面积=四边形HFBA-三角形DEH的面积-三角形ADB的面积,然后根据已知条件和正方形的性质即可解答.【详解】解:(1)由题意,,,当时,,,(2)理由如下:延长交于,如下图在正方形和正方形中,,,在和中,(全等三角形对应角相等),且,,,即.
(3)延长,交于点,,,,【考点】本题是四边形综合题目,考查了正方形面积的计算、三角形面积的计算、动点问题等知识;本题难度较大,综合性强;但认真审题和灵活应用所学知识是解答本题的关键.2、(6-)s【解析】【分析】设点E运动的时间是x秒.根据题意可得方程,解方程即可得到结论.【详解】解:设点E运动的时间是xs.根据题意可得22+(2x)2=(3-2x)2+x2,解这个方程得x1=6-,x2=6+,∵3÷2=1.5(s),2÷1=2(s),∴两点运动了1.5s后停止运动.∴x=6-.答:当△AEF是以AF为底边的等腰三角形时,点E运动的时间是(6-)s.【考点】本题考查了一元二次方程的应用,考查了矩形的性质,等腰三角形的判定及性质,勾股定理的运用.3、(1);(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当,,当,;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:,根据图象可知:当,;当,;∴,解得:,∴与之间的函数关系式为;(2)由题意得:,整理得:,解得:.,∵让顾客得到更大的实惠,∴.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【考点】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 低温环境性能研究-洞察及研究
- 医院创卫工作安排部署会议记录范文
- 面料辅料采购岗位招聘面试题与参考回答(某大型央企)2025年
- 2025四川绵阳三台县从“大学生志愿服务西部计划”项目人员中考核招聘乡镇事业单位工作人员5人考试参考试题及答案解析
- 一级护理记录单书写范文手写
- 社区禁毒工作总结会议记录
- 老年护理学选择题题库(附答案)
- 个案护理记录范文大全
- 护理质量管理委员会会议记录范文
- 礼貌用语的使用课件
- T/SFABA 7-2024天然食品添加剂天然性溯源
- T/CECS 10011-2022聚乙烯共混聚氯乙烯高性能双壁波纹管材
- T/CACEM 22.6-2022校车运营服务管理第6部分:评价与改进
- DB31/T 477-2018旅行社服务质量要求及等级划分
- 购物中心行业研究报告2024-2025商业洞察
- AI智能体的感知与理解
- 新闻记者职业资格高频真题含答案2025年
- 《工程制图》课件
- 餐饮行业数字化门店运营与管理效率提升报告
- S7-1200 PLC原理及应用基础 课件 第5章 S7-1200 PLC的模拟量处理
- 2024年四川省古蔺县事业单位公开招聘医疗卫生岗笔试题带答案
评论
0/150
提交评论