




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、下列说法中不正确的是()A.任意两个等边三角形相似 B.有一个锐角是40°的两个直角三角形相似C.有一个角是30°的两个等腰三角形相似 D.任意两个正方形相似2、如图,线段,点是线段的黄金分割点(且),点是线段的黄金分割点(),点是线段的黄金分割点依此类推,则线段的长度是(
)A. B. C. D.3、如图,一个油桶靠在直立的墙边,量得并且则这个油桶的底面半径是()A. B. C. D.4、已知A、B两地相距10km,在地图上相距10cm,则这张地图的比例尺是(
).A.100000:1 B.1000:1 C.1:100000 D.1:10005、如图,在中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=bsinB B.b=csinB C.a=btanB D.b=ctanB6、已知(a≠0,b≠0),下列变形正确的是()A. B. C.2a=3b D.3a=2b二、多选题(7小题,每小题2分,共计14分)1、如图,在△ABC中,点D,E分别在边AB、AC上,下列条件中能判断△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.2、利用反例可以判断一个命题是错误的,下列命题错误的是(
)A.若,则 B.对角线相等的四边形是矩形C.函数的图象是中心对称图形 D.六边形的外角和大于五边形的外角和3、在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,且a=5,b=12,c=16,下面四个式子中错误的有()A.sinA= B.cosA= C.tanA= D.sinB=4、下列说法中,不正确的是(
)A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心5、已知:如图,AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O于点E,AE的延长线交BC于点F,连接AD、BD.以下结论中正确的有()A.AD∥OC B.点E为△CDB的内心 C.FC=FE D.CE•FB=AB•CF6、如图,在四边形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,点P是边BC上的动点,若△ABP与△CDP相似,则BP=(
)A.3.6B.C.D.2.47、在Rt△ABC中,∠C=90°,当已知∠A和a时,求c,不能选择的关系式是(
)A.c= B.c= C.c=a·tanA D.c=第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_____.2、如图,平行四边形ABCD中,,点的坐标是,以点为顶点的抛物线经过轴上的点A,B,则此抛物线的解析式为__________________.3、如图1是台湾某品牌手工蛋卷的外包装盒,其截面图如图2所示,盒子上方是一段圆弧(弧MN).D,E为手提带的固定点,DE与弧MN所在的圆相切,DE=2.手提带自然下垂时,最低点为C,且呈抛物线形,抛物线与弧MN交于点F,G.若△CDE是等腰直角三角形,且点C,F到盒子底部AB的距离分别为1,,则弧MN所在的圆的半径为_____.4、若二次函数的顶点在x轴上,则__________.5、图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,操作平台C离地面的高度为_______米.(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)6、二次函数的部分图象如图所示,由图象可知,方程的解为___________________;不等式的解集为___________________.7、已知=,则=________.四、解答题(6小题,每小题10分,共计60分)1、如图,在平面直角坐标系中,直线与轴、轴分别交于、两点,抛物线经过、两点;(1)求抛物线的解析式;(2)点为轴上一点,点为直线上一点,过作交轴于点,当四边形为菱形时,请直接写出点坐标;(3)在(2)的条件下,且点在线段上时,将抛物线向上平移个单位,平移后的抛物线与直线交于点(点在第二象限),点为轴上一点,若,且符合条件的点恰好有2个,求的取值范围.2、如图所示,直线y=x+2与坐标轴交于A、B两点,与反比例函数y=(x>0)交于点C,已知AC=2AB.(1)求反比例函数解析式;(2)若在点C的右侧有一平行于y轴的直线,分别交一次函数图象与反比例函数图象于D、E两点,若CD=CE,求点D坐标.3、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为.求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由.4、(1)证明推断:如图(1),在正方形中,点,分别在边,上,于点,点,分别在边,上,.求证:;(2)类比探究:如图(2),在矩形中,将矩形沿折叠,使点落在边上的点处,得到四边形,交于点,连接交于点.试探究与之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接,若,,求的长.5、已知==,求的值.6、渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润元与降价元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?-参考答案-一、单选题1、C【解析】【分析】直接利用相似图形的性质分别分析得出答案.【详解】A.任意两个等边三角形相似,说法正确;B.有一个锐角是40°的两个直角三角形相似,说法正确;C.有一个角是30°的两个等腰三角形相似,30°有可能是顶角或底角,故说法错误;D.任意两个正方形相似,说法正确.故选:C.【考点】本题主要考查了图形的相似,正确把握相似图形的判定方法是解题关键.2、C【解析】【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值叫做黄金比进行解答即可.【详解】解:根据黄金比的比值,,则,…依此类推,则线段,故选C.【考点】本题考查的是黄金分割的知识,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.3、C【解析】【分析】根据切线的性质,连接过切点的半径,构造正方形求解即可.【详解】如图所示:设油桶所在的圆心为O,连接OA,OC,∵AB、BC与⊙O相切于点A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四边形OABC是正方形,∴OA=AB=BC=OC=0.8m,故选:C.【考点】考查了切线的性质和正方形的判定、性质,解题关键是理解和掌握切线的性质.4、C【解析】【分析】比例尺=图上距离:实际距离,根据题意可直接求得比例尺.【详解】∵10km=1000000cm,∴比例尺为10:1000000=1:100000.故选C.【考点】掌握比例尺的计算方法,注意在求比的过程中,单位要统一.比例尺=图上距离:实际距离,图上距离在前,实际距离在后.5、B【解析】【分析】根据三角函数的定义进行判断,即可解决问题.【详解】∵中,,、、所对的边分别为a、b、c∴,即,则A选项不成立,B选项成立,即,则C、D选项均不成立故选:B.【考点】本题考查了三角函数的定义,熟记定义是解题关键.6、C【解析】【分析】根据比例的性质“两内项之积等于两外项之积”对各选项分析判断即可得.【详解】解:A、∵,∴,∴,选项说法错误,不符合题意;B、∵,∴,∴,选项说法错误,不符合题意;C、∵,∴,选项说法正确,符合题意;D、∵,∴,选项说法错误,不符合题意;故选C.【考点】本题考查了比例的性质,解题的关键是熟记比例的性质.二、多选题1、ABD【解析】【分析】根据三角形相似的判断方法判断即可.【详解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合题意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合题意;C、,不能判定△AED∽△ABC,不符合题意;D、∵,∠A=∠A,∴△AED∽△ABC,符合题意.故选:ABD.【考点】此题考查了三角形相似的判断方法,解题的关键是熟练掌握三角形相似的判定方法.2、ABD【解析】【分析】根据有理数的乘法、矩形的判定定理、反比例函数的性质、多边形的外角性质逐一判断即可.【详解】解:A、当b=0,a≠0时,则,该选项符合题意;B、如图:四边形ABCD的对角线AC=BD,但四边形ABCD不是矩形,该选项符合题意;C、函数的图象是中心对称图形,该选项不符合题意;D、多边形的外角和都相等,等于360°,该选项符合题意;故选:ABD.【考点】本题考查了命题与定理的知识,解题的关键是了解判断一个命题是假命题的时候可以举出反例.3、ABCD【解析】【分析】根据三角函数的定义即可得到结论.【详解】解:∵a=5,b=12,c=16,∴a2+b2≠c2,∴△ABC不是直角三角形,∴A、B、C、D四个选项都不对,故选:ABCD.【考点】本题考查的是锐角三角函数的定义,锐角A的对边a与斜边c的比叫做∠A的正弦;锐角A的邻边b与斜边c的比叫做∠A的余弦;锐角A的对边a与邻边b的比叫做∠A的正切.4、ABC【解析】【分析】根据垂径定理的推论,即如果一条直线满足:①垂直于弦,②平分弦,③过圆心,④平分优弧,⑤平分劣弧中的两个条件,即可推论出其余三个,逐一进行判断即可.【详解】解:A、由于直径也是弦,所以平分一条直径的弦不一定垂直这条直径,选项说法错误,符合题意;B、平分一条弧的直线不一定垂直于这条弧,应该是:过圆心,且平分一条弧的直线垂直于这条弧所对的弦,选项说法错误,符合题意;C、弦的垂线不一定经过这条弦所在的圆心,应该是:弦的垂直平分线必经过这条弦所在的圆心,选项说法错误,符合题意;D、在一个圆内,平分一条弧和它所对弦的直线必经过这个圆的圆心,选项说法正确,不符合题意;故选ABC.【考点】本题考查了垂径定理,解题的关键是掌握垂径定理及其推论.5、ABD【解析】【分析】连接OD,由CD、CB为⊙O的切线,可得DC=BC,由OD=OB,可得OC为BD的垂直平分线,可证OC⊥BD,再证AD⊥BD,可判断选项A正确;连接DE、BE,CD、CB为⊙O的切线,可得∠ODE+∠CDE=90°,∠OBE+∠CBE=90°,推得∠CDE=∠DOE,∠CBE=∠BOE,由,可得∠EDB=∠EBD=∠CDE=∠CBE,可判断选项B正确;用反证法假设FC=FE,可得∠FCE=∠FEC,可证△CDB为等边三角形,与已知△CDB为等腰三角形矛盾,可判断选项C不正确;先证△ABE∽△BFE,可得,再证△CEF∽△CBE,可得,推出,可判断选项D正确.【详解】解:连接OD,∵CD、CB为⊙O的切线,∴DC=BC,∵OD=OB,∴OC为BD的垂直平分线,∴OC⊥BD,∵AB为直径,∴∠ADB=90°,∴AD⊥BD,∴AD∥OC,故选项A正确;连接DE、BE,∵CD、CB为⊙O的切线,∴OD⊥DC,OB⊥BC,∴∠ODE+∠CDE=90°,∠OBE+∠CBE=90°,∵2∠ODE+∠DOE=180°,2∠OBE+∠BOE=180°,∴∠ODE+∠DOE=90°,∠OBE+∠BOE=90°,∴∠CDE=∠DOE,∠CBE=∠BOE,∵,∴∠DAE=∠DBE=∠EDB=∠EBD=∠DOE=∠BOE,∴∠EDB=∠EBD=∠CDE=∠CBE,∴点E为△CDB各内角平分线的交点,故选项B正确;假设FC=FE,∴∠FCE=∠FEC,∵∠CEF=∠AEO=∠EAB=∠EDB=∠EBD,∴2∠EDB=2∠EBD=2∠BCE即∠DCB=∠CDB=∠CBD,∴△CDB为等边三角形,与已知△CDB为等腰三角形矛盾,故假设不正确,故选项C不正确;∵AB为直径,∴∠AEB=90°又∵BC为切线,AB为直径,∴∠ABF=90°,∴∠FBE+∠EBA=90°,∠EAB+∠EBA=90°,∴∠EAB=∠EBF,∠AEB=∠BEF=90°,∴△ABE∽△BFE,∴,∵∠CBE=∠CEF,∠ECF=∠BCE,∴△CEF∽△CBE,∴,∴,∴CE•FB=AB•CF,故选项D正确;结论中正确的有ABD.故选择ABD.【考点】本题考查圆的切线性质,线段垂直平分线判定与性质,圆周角定理,证明三角形内心,反证法,三角形相似判定与性质,掌握圆的切线性质,线段垂直平分线判定与性质,圆周角定理,证明三角形内心,反证法,三角形相似判定与性质是解题关键.6、ABC【解析】【分析】根据相似求出相似比,根据相似比分类讨论计算出结果即可.【详解】解:∠B=∠C,根据题意:或,则:或,则:或,故答案为:或,故选:ABC.【考点】本题考查相似三角形得的性质与应用,能够熟练掌握相似三角形的性质是解决本题的关键.7、BCD【解析】【分析】在Rt△ABC中,∠C=90°,sinA=变形可判断A,在Rt△ABC中,∠C=90°,由cosA=和tanA=,可得可判断B、D,在Rt△ABC中,∠C=90°,由tanA=,可得,由勾股定理c=,可判断C.【详解】解:在Rt△ABC中,∠C=90°,∵sinA=,∴c=,故选项A正确;在Rt△ABC中,∠C=90°,∵cosA=∴∵tanA=∴∴故选项B不正确;在Rt△ABC中,∠C=90°,∵tanA=∴∴c=故选项C不正确在Rt△ABC中,∠C=90°,∵tanA=∴∵cosA=∴∴故选项D不正确;不能选择的关系式是BCD.故选择BCD.【考点】本题主要考查解三角形,勾股定理,解题的关键是熟练运用三角函数的定义求解.三、填空题1、4【解析】【分析】通过A、B两点得出对称轴,再根据对称轴公式算出b,由此可得出二次函数表达式,从而算出最小值即可推出n的最小值.【详解】∵A、B的纵坐标一样,∴A、B是对称的两点,∴对称轴,即,∴b=-4.∴抛物线解析式为:.∴抛物线顶点(2,-3).∴满足题意n的最小值为4,故答案为:4.【考点】本题考查二次函数对称轴的性质,顶点式的变形及抛物线的平移,关键在于根据对称轴的性质从题意中判断出对称轴.2、【解析】【分析】根据平行四边形的性质得到CD=AB=4,即C点坐标为,进而得到A点坐标为,B点坐标为,利用待定系数法即可求得函数解析式.【详解】∵四边形ABCD为平行四边形∴CD=AB=4∴C点坐标为∴A点坐标为,B点坐标为设函数解析式为,代入C点坐标有解得∴函数解析式为,即故答案为.【考点】本题考查了平行四边形的性质,和待定系数法求二次函数解析式,问题的关键是求出A点或B点的坐标.3、.【解析】【分析】以DE的垂直平分线为y轴,AB所在的直线为x轴建立平面直角坐标系,设抛物线的表达式为y=ax2+1,因为△CDE是等腰直角三角形,DE=2,得点E的坐标为(1,2),可得抛物线的表达式为y=x2+1,把当y代入抛物线表达式,求得MH的长,再在Rt△FHM中,用勾股定理建立方程,求得所在的圆的半径.【详解】如图,以DE的垂直平分线为y轴,AB所在的直线为x轴建立平面直角坐标系,设所在的圆的圆心为P,半径为r,过F作y轴的垂线交y轴于H,设抛物线的表达式为y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴点E的坐标为(1,2),代入抛物线的表达式,得:2=a+1,a=1,∴抛物线的表达式为y=x2+1,当y时,即,解得:,∴FH.∵∠FHM=90°,DE与所在的圆相切,∴,解得:,∴所在的圆的半径为.故答案为.【考点】本题考查了圆的切线的性质,待定系数法求抛物线的表达式,垂径定理.解题的关键是建立合适的平面直角坐标系得出抛物线的表达式.4、-2或【解析】【分析】根据二次函数一般式的顶点坐标公式表示出顶点,再根据顶点在x轴上,建立等量关系求解即可.【详解】解:的顶点坐标为:∵顶点在x轴上∴解得:故答案为:或【考点】本题考查二次函数一般式的顶点坐标,掌握二次函数一般式的顶点坐标公式是解题关键.5、7.6【解析】【分析】作于,于,如图2,易得四边形为矩形,则,,再计算出,在中利用正弦可计算出,然后计算即可.【详解】解:作于E,于,如图2,∴四边形为矩形,∴,,∴,∴在中,,∴,∴,∴操作平台离地面的高度为.故答案是:.【考点】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用三角函数的定义进行几何计算.6、
,
或【解析】【分析】根据抛物线的对称轴和抛物线与x轴一个交点求出另一个交点,再通过二次函数与方程的两根,二次函数与不等式解集的关系求得答案.【详解】∵抛物线的对称轴为,抛物线与x轴一个交点为(5,0)∴抛物线与x轴另一个交点为(-1,0)∴方程的解为:,由图像可知,不等式的解集为:或.故答案为:,;或.【考点】本题考查了二次函数的图像性质,掌握二次函数与方程的两根,二次函数与不等式的解集关系,是解决问题的关键.7、【解析】【分析】利用比例的性质进行变形,然后代入代数式中合并约分即可.【详解】解:∵,∴,则.故答案为:.【考点】本题考查比例问题,关键掌握比例的性质,会利用性质把比例式进行恒等变形,会根据需要选择灵活的比例式解决问题.四、解答题1、(1);(2);;(3)【解析】【分析】(1)由题意易得,,然后代入抛物线解析式进行求解即可;(2)由题意可画出图象,设点,然后求出直线AB的解析式为,则可设点,点,进而根据中点坐标公式及两点距离公式可进行求解;(3)过作轴交于,由(2)可得:,,则有,设,,进而可得,则,然后可得,则有,最后根据一元二次方程根的判别式可进行求解.【详解】解:(1)∵直线与轴、轴分别交于、两点,∴,,∵抛物线经过、两点,∴,解得:,∴抛物线的解析式为;(2)由(1)可得,,由题意可得如图所示:设点,直线AB的解析式为,把点A、B代入得:,解得:,∴直线AB的解析式为,设点,点,∵四边形是菱形,∴根据中点坐标公式可得:,即,∴,∵,∴根据两点距离公式可得:,解得:或或(不符合题意,舍去),∴;;(3)过作轴交于,如图所示:由(2)可得:,,∴,设,,∵,∴,∴,,∵,,∴,∴,∴,∴,即,化简得:,当方程有唯一实根时,满足条件的只有一个,∴,化简得:,解得:,(含去)∴,设平移后的抛物线为:,将点坐标代入平移后解析式得:,解得:,.【考点】本题主要考查二次函数的综合及相似三角形的性质与判定,熟练掌握二次函数的综合及相似三角形的性质与判定是解题的关键.2、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y轴于M,如图,利用直线解析式确定A(0,2),B(﹣2,0),再根据平行线分线段成比例定理求出MC=4,AM=4,则C(4,6),然后把C点坐标代入y=中求出k得到反比例函数解析式;(2)MC交直线DE于N,如图,证明△CND为等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,设CN=t,则N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D点坐标.【详解】解:(1)作CM⊥y轴于M,如图,当x=0时,y=x+2=2,则A(0,2),当y=0时,x+2=0,解得x=﹣2,则B(﹣2,0),∵MC∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函数解析式为y=;(2)MC交直线DE于N,如图,∵MC=MA,∴△MAC为等腰直角三角形,∴∠ACM=45°,∴∠DCN=45°,∴△CND为等腰直角三角形,∴CN=DN,∵CD=CE,∴CN=NE=DN,设CN=t,则N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,∴D(6,8).【考点】本题是反比例函数与一次函数的综合题,涉及到待定系数法求函数解析式、平行线分线段成比例定理、等腰三角形的性质,有一定的难度3、;有最大值;存在满足条件的点,其坐标为或【解析】【分析】可设抛物线解析式为顶点式,由点坐标可求得抛物线的解析式,则可求得点坐标,利用待定系数法可求得直线解析式;设出点坐标,从而可表示出的长度,利用二次函数的性质可求得其最大值;过作轴,交于点,过和于,可设出点坐标,表示出的长度,由条件可证得为等腰直角三角形,则可得到关于点坐标的方程,可求得点坐标.【详解】解:抛物线的顶点的坐标为,可设抛物线解析式为,点在该抛物线的图象上,,解得,抛物线解析式为,即,点在轴上,令可得,点坐标为,可设直线解析式为,把点坐标代入可得,解得,直线解析式为;设点横坐标为,则,,,当时,有最大值;如图,过作轴交于点,交轴于点,作于,设,则,,是等腰直角三角形,,,当中边上的高为时,即,,,当时,,方程无实数根,当时,解得或,或,综上可知存在满足条件的点,其坐标为或.【考点】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在中主要是待定系数法的考查,注意抛物线顶点式的应用,在中用点坐标表示出的长是解题的关键,在中构造等腰直角三角形求得的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.4、(1)见解析;(2);见解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再证明四边形DQFG是平行四边形即可解决问题;(2)如图2中,作GM⊥AB于M.然后证明△ABE∽△GMF即可解决问题;(3)如图3中,作PM⊥BC交BC的延长线于M.利用相似三角形的性质求出PM,CM即可解决问题.【详解】(1)如图(1),∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四边形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四边形DQFG是平行四边形,∴DQ=GF,∴FG=AE;(2).理由:如图(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碱石合成醇工艺考核试卷及答案
- 液晶显示器件阵列制造工专业知识考核试卷及答案
- 医疗器械装配工适应性考核试卷及答案
- 锅炉除灰、脱硫、脱硝设备检修工基础考核试卷及答案
- 辽宁省沈阳市2025-2026学年九年级上册第一次月考数学模拟试卷练习卷含解析
- 银行技术岗测试题及答案
- 卫生法规及多领域知识点执业考试模拟试卷
- 银行智力测试题目及答案
- 银行远程营销面试题及答案
- 银行应届生试题及答案
- 2025年辅警面试考试试题库目(答案+解析)
- 校长考试笔试试题及答案
- 2025年江苏保安员考试题库及答案
- 中小学校长考试试题及答案
- 德州市禹城市事业单位引进青年人才笔试真题2024
- 生物医药产业介绍
- 纪委委员培训课课件
- 2024教科版一年级科学上册全册教案
- 第4课 记录数据讲诀窍(教学设计)2024-2025学年四年级上册人教版信息技术
- 2025年船员服务行业规模分析及投资前景研究报告
- 第6课 戊戌变法 课件(内嵌视频) 统编版初中历史八年级上册
评论
0/150
提交评论