难点解析-湖北省宜都市中考数学真题分类(勾股定理)汇编综合测试试题_第1页
难点解析-湖北省宜都市中考数学真题分类(勾股定理)汇编综合测试试题_第2页
难点解析-湖北省宜都市中考数学真题分类(勾股定理)汇编综合测试试题_第3页
难点解析-湖北省宜都市中考数学真题分类(勾股定理)汇编综合测试试题_第4页
难点解析-湖北省宜都市中考数学真题分类(勾股定理)汇编综合测试试题_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省宜都市中考数学真题分类(勾股定理)汇编综合测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、为⊙外一点,与⊙相切于点,,,则的长为(

)A. B. C. D.2、如图所示的网格是正方形网格,A,B,C,D是网格线交点,则与的大小关系为(

)A. B. C. D.无法确定3、如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在外面的长为hcm,则h的取值范围是()A.0<h≤11 B.11≤h≤12 C.h≥12 D.0<h≤124、已知点是平分线上的一点,且,作于点,点是射线上的一个动点,若,则的最小值为(

)A.2 B.3 C.4 D.55、如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.则这只蚂蚁沿着台阶面爬行的最短路程是(

)A.6 B.8 C.9 D.156、如图,正方体盒子的棱长为2,M为BC的中点,则一只蚂蚁从A点沿盒子的表面爬行到M点的最短距离为(

)A. B.C. D.7、如图,有一块直角三角形纸片,∠C=90°,AC=8,BC=6,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为(

)A.2 B. C. D.4第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了__米.2、如图,在△ABC中,AB=10,BC=9,AC=17,则BC边上的高为_______.3、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为_____尺.4、《九章算术》中记载着这样一个问题:已知甲、乙两人同时从同一地点出发,甲的速度为7步/分,乙的速度为3步/分,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,那么相遇时,甲、乙各走了多远?解:如图,设甲乙两人出发后x分钟相遇.根据勾股定理可列得方程为______.5、已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于_________cm2.6、如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.7、如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为_______8、如图1,邻边长为2和6的矩形分割成①,②,③,④四块后,拼接成如图2不重叠、无缝隙的正方形,则图2中的值为___________,图1中的长为_______.三、解答题(7小题,每小题10分,共计70分)1、已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.2、如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的长.3、台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向由行驶向,已知点为海港,并且点与直线上的两点,的距离分别为,,又,以台风中心为圆心周围250km以内为受影响区域.(1)求的度数;(2)海港受台风影响吗?为什么?4、阅读下面材料:小明遇到这样一个问题:∠MBN=30°,点A为射线BM上一点,且AB=4,点C为射线BN上动点,连接AC,以AC为边在AC右侧作等边三角形ACD,连接BD.当AC⊥BN时,求BD的长.小明发现:以AB为边在左侧作等边三角形ABE,连接CE,能得到一对全等的三角形,再利用∠EBC=90°,从而将问题解决(如图1).请回答:(1)在图1中,小明得到的全等三角形是△≌△;BD的长为.(2)动点C在射线BN上运动,当运动到AC时,求BD的长;(3)动点C在射线BN上运动,求△ABD周长最小值.5、如图所示,在中,,,,为边上的中点.(1)求、的长度;(2)将折叠,使与重合,得折痕;求、的长度.6、如图,小明家在一条东西走向的公路北侧米的点处,小红家位于小明家北米(米)、东米(米)点处.(1)求小明家离小红家的距离;(2)现要在公路上的点处建一个快递驿站,使最小,请确定点的位置,并求的最小值.7、如图,把长方形纸片沿折叠,使点落在边上的点处,点落在点处.(1)试说明;(2)设,,,试猜想,,之间的关系,并说明理由.-参考答案-一、单选题1、A【解析】【分析】连接OT,根据切线的性质求出求,结合利用含的直角三角形的性质求出OT,再利用勾股定理求得PT的长度即可.【详解】解:连接OT,如下图.∵与⊙相切于点,∴.∵,,∴,∴.故选:A.【考点】本题考查了切线的性质,含的直角三角形的性质,勾股定理,求出OT的长度是解答关键.2、C【解析】【分析】根据每个小网格都为正方形,设每个网格为1,由勾股定理可以求出AD、AC、CD的长,再由勾股定理的逆定理得到△ACD为等腰直角三角形,同理可得△ABC为等腰直角三角形,即∠BAC=∠DAC.【详解】解:如图,设正方形每个网格的边长都为1,连接CD、BC,则,,,,为等腰直角三角形,,同理:,,,,为等腰直角三角形,,.故选:C.【考点】本题考查勾股定理的性质、勾股定理的逆定理以及等腰直角三角形的判定,解本题的关键要掌握勾股定理及逆定理的基本知识.3、B【解析】【分析】根据题意画出图形,先找出h的值为最大和最小时筷子的位置,再根据勾股定理解答即可.【详解】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===13cm,∴h=24﹣13=11cm.∴h的取值范围是11cm≤h≤12cm.故选:B.【考点】本题考查了勾股定理的实际应用问题,解答此题的关键是根据题意画出图形找出何时h有最大及最小值,同时注意勾股定理的灵活运用,有一定难度.4、B【解析】【分析】根据垂线段最短可得PN⊥OA时,PN最短,再根据角平分线上的点到角的两边的距离相等可得PM=PN,再结合勾股定理求解即可.【详解】解:当PN⊥OA时,PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵,,,∴由勾股定理可知:PM=3,∴PN的最小值为3.故选B.【考点】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质及勾股定理,熟记性质是解题的关键.5、D【解析】【分析】此类题目只需要将其展开便可直观的得出解题思路.将台阶展开得到的是一个矩形,蚂蚁要从B点到A点的最短距离,便是矩形的对角线,利用勾股定理即可解出答案.【详解】解:如图,将台阶展开,因为AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以蚂蚁爬行的最短线路为15.故选:D.【考点】本题考查了勾股定理的应用,掌握勾股定理的应用并能得出平面展开图是解题的关键.6、B【解析】【分析】先利用展开图确定最短路线,再利用勾股定理求解即可.【详解】解:如图,蚂蚁沿路线AM爬行时距离最短;∵正方体盒子棱长为2,M为BC的中点,∴,∴,故选:B.【考点】本题考查了蚂蚁爬行的最短路径为题,涉及到了正方形的性质、正方体的展开图、勾股定理、两点之间线段最短等知识,解题关键是牢记相关概念与灵活应用.7、B【解析】【分析】根据勾股定理求出AB的长,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【详解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故选:B.【考点】此题考查了勾股定理的应用,翻折的性质,熟记勾股定理的计算公式是解题的关键.二、填空题1、9.【解析】【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米,故答案为:9.【考点】本题考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.2、8【解析】【分析】作交的延长于点,在中,,在中,,根据列出方程即可求解.【详解】如图,作交的延长于点,则即为BC边上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案为:8.【考点】本题考查了勾股定理,掌握三角形的高,直角三角形是解题的关键.3、13【解析】【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【详解】解:设水深为尺,则芦苇长为尺,根据勾股定理得:,解得:,芦苇的长度(尺,答:芦苇长13尺.故答案为:13.【考点】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.4、【解析】【分析】设甲、乙二人出发后相遇的时间为x,然后利用勾股定理列出方程即可.【详解】解:设经x秒二人在C处相遇,这时乙共行AC=3x,甲共行AB+BC=7x,∵AB=10,∴BC=7x-10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x-10)2=(3x)2+102,故答案是:(7x-10)2=(3x)2+102.【考点】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形.5、24【解析】【分析】利用勾股定理,可得:a2+b2=c2=100,即(a+b)2﹣2ab=100,可得ab=48,即可得出面积.【详解】解:∵∠C=90°,∴a2+b2=c2=100,∴(a+b)2﹣2ab=100,∴196﹣2ab=100,∴ab=48,∴S△ABC==24cm2;故答案为:24.【考点】本题考查勾股定理、完全平方公式的变形求值、三角形面积计算的运用,熟知勾股定理是解题的关键.6、7【解析】【分析】根据勾股定理求得BC,再根据折叠性质得到AE=CE,进而由三角形的周长=AB+BC求解即可.【详解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案是:7.【考点】本题考查勾股定理、折叠性质,熟练掌握勾股定理是解答的关键.7、13【解析】【分析】先根据△BCE等腰直角三角形得出BC的长,进而可得出BD的长,根据△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的长.【详解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案为13.【考点】本题考查了等腰直角三角形的性质及勾股定理,熟知等腰三角形两腰相等的性质是解答此题的关键.8、

【解析】【分析】由等积法解得正方形的边长,再利用勾股定理解得图④的直角边FH的长,在图2中,利用正弦的定义解得,接着利用勾股定理解得,据此解得的值,最后利用解答即可.【详解】解:矩形的面积为:2×6=12正方形的边长如图1,如图2,设或(舍去)故答案为:,.【考点】本题考查正方形与矩形、图形的拼接,涉及勾股定理、正弦、余弦等知识,是重要考点,掌握相关知识是解题关键.三、解答题1、△ABC为直角三角形或等腰三角形【解析】【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.【详解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形.2、AB=2-2,CD=4-.【解析】【分析】此题为几何题,看题目只是一个四边形,要求两条未知边,那肯定要添辅助线.过点D作DH⊥BA延长线于H,作DM⊥BC于M.构建矩形HBMD.利用矩形的性质和解直角三角形来求AB、CD的长度.【详解】如图,过点D作DH⊥BA延长线于H,作DM⊥BC于点M.∵∠B=90°,∴四边形HBMD是矩形.∴HD=BM,BH=MD,∠ABM=∠ADC=90°,又∵∠C=60°,∴∠ADH=∠MDC=30°,∴在Rt△AHD中,AD=1,∠ADH=30°,则AH=AD=,DH=.∴MC=BC-BM=BC-DH=2-=.∴在Rt△CMD中,CD=2MC=4-,DM=CD=.∴AB=BH-AH=DM-AH=-=【考点】本题考查了勾股定理和矩形的判定与性质.此题的关键是根据题意作出辅助线,构建矩形.3、(1)90°;(2)受台风影响,理由见解析【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而得出∠ACB的度数;(2)利用三角形面积得出CD的长,进而得出海港C是否受台风影响.【详解】解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受台风影响.【考点】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.4、(1)ABD,ACE,;(2)BD的长为;(3)+4.【解析】【分析】(1)根据SAS可证△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的长度;(2)作AH⊥BC于点H,以AB为边在左侧作等边△ABE,连接CE,求出BH,HC即BC的长度,再利用勾股定理即可求出CE的长度,由(1)知BD=CE,据此得解;(3)作AH⊥BC于点H,以AB为边在左侧作等边△ABE,延长EB至F,使BF=EB,连接AF交BN于C',连接EC',此时BD+AC'有最小值即为AF,此时△ABD周长=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等边三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案为:ABD,ACE,;(2)解:如下图,作AH⊥BC于点H,以AB为边在左侧作等边△ABE,连接CE,∵AB=4,∠MAN=30°,∴AH=2,BH=,∵AC=,∴HC=,∴BC=BH+HC=+=,∴CE=,由(1)可知BD=CE,∴此时BD的长为;(3)解:如图,以AB为边在左侧作等边△ABE,延长EB至F,使BF=EB,连接AF交BN于C',连接EC',∵EC'=FC'=BD,∴此时BD+AC'有最小值即为AF,∴此时△ABD周长=AD+BD+AB=AF+AB最小,作AG⊥BE于G,∴AG∥BN,∴∠BAG=30°,∴BG=AB=2,AG=,∴GF=BG+BF=2+4=6,由勾股定理得AF=,∴此时△ABD周长为:+4.【考点】本题主要考查全等三角形的判定和性质,勾股定理等,作出合适的辅助线,构造出全等三角形是解题的关键.5、(1)BD=2,;(2),【解析】【分析】(1)由勾股定理求出BC=4,再根据中点的性质可得到BD,然后再一次运用勾股定理求出AD即可;(2)设,则,,利用勾股定理列出方程解,从而得解.【详解】(1)∵在中,,,∴在中,∴又∵为边上的中点∴∴在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论