版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版8年级数学上册期中试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(7小题,每小题2分,共计14分)1、下列各数中,与-1最接近的是(
)A.0.4 B.0.6 C.0.8 D.12、下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣33、下列二次根式是最简二次根式的是()A. B. C. D.4、如图,在数轴上表示实数的点可能(
).A.点P B.点Q C.点M D.点N5、在直角坐标系中,点P(m,2—2m)的横坐标与纵坐标互为相反数,则P点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6、下列说法中:①不带根号的数都是有理数;
②-8没有立方根;③平方根等于本身的数是1;④有意义的条件是a为正数;其中正确的有(
)A.0个 B.1个 C.2个 D.3个7、点A(2,-1)关于y轴对称的点B的坐标为(
)A.(2,1) B.(-2,1) C.(2,-1) D.(-2,-1)二、多选题(3小题,每小题2分,共计6分)1、如果,那么下列等式正确的是(
)A. B. C. D.2、下面关于无理数的说法正确的是(
)A.无理数就是开方开不尽的数 B.无理数是无限不循环小数C.无理数包括正无理数、零、负无理数 D.无理数都可以用数轴上的点来表示3、下列各式计算不正确的是(
)A. B. C. D.第Ⅱ卷(非选择题80分)三、填空题(10小题,每小题2分,共计20分)1、已知点,轴,,则点的坐标为______.2、公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角θ的正切为,那么大正方形的面积是_____.3、如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.4、如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为_______5、如果定义一种新运算,规定=ad﹣bc,请化简:=___.6、在Rt△ABC中,∠C=90°,AC=9,AB=15,则点C到AB的距离是_______.7、化简:①______;②______;③______.8、如果方程无实数解,那么的取值范围是_______.9、如图,已知数轴上的点A、B、C、D分别表示数、1、2、3,则表示数的点P应落在线段_________上.(从“”,“”,“”,“”中选择)10、若一个偶数的立方根比2大,平方根比4小,则这个数是______.四、解答题(6小题,每小题10分,共计60分)1、.2、已知实数a,b,c在数轴上的位置如图所示,化简:.3、阅读下列材料:设:,①则.②由②-①,得,即.所以.根据上述提供的方法.把和化成分数,并想一想.是不是任何无限循环小数都可以化成分数?4、计算:(1)(2)5、已知:点,且点到轴、轴的距离相等.求点的坐标.6、如图,是一块草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块草坪的面积.-参考答案-一、单选题1、C【解析】【分析】先估算接近的数,再减去1即可【详解】∵1.5<<1.74∴0.5<-1<0.74故选:C【考点】本题考查无理数的估值,理解算术平方根的概念是关键,了解二分法是难点2、A【解析】【分析】根据二次根式的性质把各个二次根式化简,判断即可.【详解】解:()2=3,A正确,符合题意;=3,B错误,不符合题意;=,C错误,不符合题意;(-)2=3,D错误,不符合题意;故选A.【考点】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.3、D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含分母,故A不符合题意;B、被开方数,含分母,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D.【考点】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4、C【解析】【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【考点】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.5、D【解析】【分析】根据m+2-2m=0计算m的值,后判定横坐标,纵坐标的正负求解即可【详解】∵点P(m,2—2m)的横坐标与纵坐标互为相反数,∴m+2-2m=0,∴m=2,∴2-2m=-2,∴点P位于第四象限,故选D【考点】本题考查了坐标与象限的关系,利用相反数的性质构造等式计算m的值是解题的关键.6、A【解析】【分析】根据是二次根式有意义的条件、平方根的概念和立方根的概念判断即可.【详解】解:不带根号的数不一定都是有理数,例如π,①错误;-8的立方根是-2,②错误;平方根等于本身的数是0,③错误;有意义的条件是a为非负数,④错误,故选A.【考点】本题考查的是二次根式有意义的条件、平方根的概念和立方根的概念,掌握二次根式中的被开方数是非负数是解题的关键.7、D【解析】【分析】根据点坐标关于轴对称的变换规律即可得.【详解】解:点坐标关于轴对称的变换规律:横坐标互为相反数,纵坐标相同.则点关于轴对称的点的坐标为,故选:D.【考点】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键.二、多选题1、BC【解析】【分析】先判断a,b的符号,然后根据二次根式的性质逐项分析即可.【详解】解∵,,∴,∴A、无意义,选项错误,不符合题意;B、,选项正确,符合题意;C、,选项正确,符合题意;D、,选项错误,不符合题意;故选BC【考点】本题考查了二次根式的乘法,二次根式的除法,以及二次根式的性质,熟练掌握性质是解答本题的关键.2、BD【解析】【分析】根据无理数的定义进行判断即可;【详解】解:A、开方开不尽的数是无理数,无理数不一定开方开不尽的数,本选项说法错误,B、无理数是无限不循环小数,故本选项说法正确,C、无理数包括正无理数、负无理数,本选项说法错误,D、无理数都可以用数轴上的点来表示故本选项说法正确;故选:BD【考点】本题主要考查无理数定义,熟练掌握无理数的概念是解答的关键,此题是基础题,需要同学们牢固掌握.3、BCD【解析】【分析】解答此题根据二次根式的性质进行化简即可.【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、,故此选项符合题意;故选BCD.【考点】本题主要考查了二次根式的化简,解答此题的关键是熟练掌握二次根式的基本运算法则.三、填空题1、(-8,-1)或(2,-1),【解析】【分析】由轴可得A、B两点纵坐标相等,由AB的长为3,分B点在A点左边和右边,分别求B点坐标即可.【详解】∵轴,点,∴A、B两点纵坐标相等,即点B的纵坐标为-1,∵,∴当点B在点A左侧时,点B横坐标为-3-5=-8,当点B在点A右侧时,点B横坐标为-3+5=2,∴点B坐标为(-8,-1)或(2,-1),故答案为:(-8,-1)或(2,-1)【考点】本题考查了坐标与图形性质,主要利用了平行于x轴的点的纵坐标相同的性质,要注意分情况讨论.2、169.【解析】【分析】由题意知小正方形的边长为7.设直角三角形中较小边长为a,较长的边为b,运用正切函数定义求解.【详解】解:由题意知,小正方形的边长为7,设直角三角形中较小边长为a,较长的边为b,则tanθ=短边:长边=a:b=5:12.所以b=a,①又以为b=a+7,②联立①②,得a=5,b=12.所以大正方形的面积是:a2+b2=25+144=169.故答案是:169.【考点】本题主要考查了解直角三角形、勾股定理的证明和正方形的面积,掌握解直角三角形、勾股定理的证明和正方形的面积是解题的关键.3、0.8【解析】【分析】梯子的长是不变的,只要利用勾股定理解出梯子滑动前和滑动后的所构成的两直角三角形,分别得出AO,A1O的长即可.【详解】解:在Rt△ABO中,根据勾股定理知,A1O==4(m),在Rt△ABO中,由题意可得:BO=1.4(m),根据勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案为0.8.【考点】本题考查勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.4、13【解析】【分析】先根据△BCE等腰直角三角形得出BC的长,进而可得出BD的长,根据△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的长.【详解】5、﹣3.【解析】【分析】根据新运算的定义将原式转化成普通的运算,然后进行整式的混合运算即可.【详解】根据题意得:=(x﹣1)(x+3)﹣x(x+2)=x2+3x﹣x﹣3﹣x2﹣2x=﹣3,故答案为:﹣3.【考点】本题主要考查了整式的混合运算,根据新运算的定义将新运算转化为普通的运算是解决此题的关键.6、【解析】【分析】首先根据勾股定理求出直角边BC的长,再根据三角形的面积为定值即可求出则点C到AB的距离【详解】在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC⋅BC=AB⋅h,∴h==故答案为【考点】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键7、
4
【解析】【分析】①利用二次根式化简即可;②利用二次根式的乘法法则进行计算即可;③先把各个二次根式化简成最简二次根式,然后进行减法计算即可.【详解】①②③故填(1).4
(2).
(3).【考点】本题考查二次根式化简以及计算,熟练掌握运算法则是解题关键.8、【解析】【分析】先移项,再根据算术平方根的性质得到答案.【详解】,,∵的结果是非负数,∴当k-2<0,方程无实数解,即k<2,故答案为:k<2.【考点】此题考查方程无解的情况,算术平方根的性质.9、∵△BCE等腰直角三角形,BE=5,∴BC=∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案为13.【考点】本题考查了等腰直角三角形的性质及勾股定理,熟知等腰三角形两腰相等的性质是解答此题的关键.5.【解析】【分析】用有理数逼近无理数,求无理数的近似值.【详解】解:∵,∴,∴,故表示数的点P应落在线段上.故答案为:.【考点】此题主要考查了估算无理数的大小估算及应用,正确掌握估算及应用是解此题关键.10、10,12,14【解析】【分析】首先根据立方根平方根的定义分别求出2的立方,4的平方,然后就可以解决问题.【详解】解:∵2的立方是8,4的平方是16,所以符合题意的偶数是10,12,14.故答案为10,12,14.【考点】本题考查立方根的定义和性质,注意本题答案不唯一.求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.四、解答题1、6.【解析】【分析】根据二次根式的乘方运算、绝对值的性质、零指数幂、负整数指数幂化简,再根据实数的混合运算法则计算即可.【详解】解:.【考点】本题考查了含二次根式的乘方,绝对值,零指数幂,负整数指数幂的实数混合运算;掌握好相关的基础知识是关键.2、【解析】【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得,,,.则原式.【考点】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.3、,.任何无限循环小数都可以化成分数.【解析】【分析】设①则,②;由,得;由已知,得,所以任何无限循环小数都可以这样化成分数.【详解】解:设①则,②由②-①,得,即.所以.由已知,得,所以.任何无限循环小数都能化成分数.【考点】考核知识点:无限循环小数和有理数.模仿,理解材料是关键.4、(1)(2)【解析】【分析】(1)根据绝对值的性质、立方根的定义进行计算;(2)根据算术平方根的性质、绝对值的性质、立方根的定义以及乘方得到结果.(1)解:原式;(2)解:原式.【考点】本题考查了实数的综合运算能力,解决此题的关键是熟练掌握绝对值、算术平方根和立方根的运算.5、点的坐标或【解析】【分析】根据到两坐标的距
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年安徽省淮北市八年级英语上册期中考试试卷及答案
- 轮椅训练方法
- 2025版视网膜脱落常见症状及护理注意事项
- 2025版冠心病症状分析及护理措施
- 幼儿看图说话训练
- 经过时间的计算教学设计
- 眼睛科眼疾病的日常预防指南
- 安全员怎样给员工培训
- 设备异常处理方法及流程
- 《资治通鉴》核心解析
- 2025年04月自考00144企业管理概论试题及标准答案
- 2025广西北海市检察机关聘用人员控制数招聘26人考试模拟试题及答案解析
- 13《少年中国说(节选)》教学设计 统编版小学语文五年级上册
- 2025年中移铁通有限公司甘肃分公司社会招聘考试参考题库及答案解析
- 校园室内设计方案
- 酒店治安管理制度模板
- 2025年社区网格工作人员考试题库及答案
- 湘美版(2024)八年级上册 第一单元第2课《多彩的假期》课件(内嵌视频)
- 游戏厅安全管理细则
- 2025年中国石油辽河石化公司秋季高校毕业生招聘45人笔试参考题库附带答案详解
- 2025-2030儿童绘本阅读行业市场现状与未来趋势及投资机会评估报告
评论
0/150
提交评论