难点解析北师大版9年级数学上册期中试卷带答案详解(能力提升)_第1页
难点解析北师大版9年级数学上册期中试卷带答案详解(能力提升)_第2页
难点解析北师大版9年级数学上册期中试卷带答案详解(能力提升)_第3页
难点解析北师大版9年级数学上册期中试卷带答案详解(能力提升)_第4页
难点解析北师大版9年级数学上册期中试卷带答案详解(能力提升)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版9年级数学上册期中试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(7小题,每小题2分,共计14分)1、如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC−CF=2HE.其中正确的结论有(

)A.1个 B.2个 C.3个 D.4个2、图,在△ABC中,AB=AC,四边形ADEF为菱形,O为AE,DF的交点,S△ABC=8,则S菱形ADEF=()A.4 B.4 C.4 D.43、如图,点A,B的坐标分别为,点C为坐标平面内一点,,点M为线段的中点,连接,则的最大值为()A. B. C. D.4、如图1,点Q为菱形ABCD的边BC上一点,将菱形ABCD沿直线AQ翻折,点B的对应点P落在BC的延长线上.已知动点M从点B出发,在射线BC上以每秒1个单位长度运动.设点M运动的时间为x,△APM的面积为y.图2为y关于x的函数图象,则菱形ABCD的面积为(

)A.12 B.24 C.10 D.205、为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.身高人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于的概率是(

)A.0.32 B.0.55 C.0.68 D.0.876、直角三角形的面积为,斜边上的中线为,则这个三角形周长为(

)A. B.C. D.7、若关于x的一元二次方程有实数根,则字母k的取值范围是(

)A. B.且 C. D.且二、多选题(3小题,每小题2分,共计6分)1、平行四边形ABCD的对角线相交于点O,分别添加下列条件使得四边形ABCD是矩形的条件有(

)是菱形的条件有(

)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO2、下列命题中不是真命题的是(

)A.两边相等的平行四边形是菱形B.一组对边平行一组对边相等的四边形是平行四边形C.两条对角线相等的平行四边形是矩形D.对角线互相垂直且相等的四边形是正方形3、下列方程一定不是一元二次方程的是(

)A. B.C. D.第Ⅱ卷(非选择题80分)三、填空题(10小题,每小题2分,共计20分)1、如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为_____.2、一元二次方程的解为__________.3、已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.4、布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红—黄—蓝”的概率是__________.5、如图,直角三角形ABC中,AC=1,BC=2,P为斜边AB上一动点.PE⊥BC,PF⊥CA,则线段EF长的最小值为_________.6、关于x的方程有两个实数根.且.则_______.7、在四边形ABCD中,ABCD,ADBC,添加一个条件________,即可判定该四边形是菱形.8、关于的一元二次方程的一个根是2,则另一个根是__________.9、有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.10、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_____.四、解答题(6小题,每小题10分,共计60分)1、已知关于x的一元二次方程x2+x=k.(1)若方程有两个不相等的实数根,求实数k的取值范围;(2)当k=6时,求方程的实数根.2、已知关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)若方程的两根都为整数,求正整数的值.3、如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至点G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.4、如图,在四边形中,,,..(1)求的长;(2)求四边形的面积.5、如图,AD是△ABC的中线,过点A、B分别作BC、AD的平行线,两平行线相交于点E.(1)求证:AE=CD;(2)当AB、AC满足什么条件时,①四边形AEBD是矩形?请说明理由;②四边形AEBD是菱形?请说明理由;③四边形AEBD是正方形?请说明理由.6、在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.-参考答案-一、单选题1、D【解析】【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判断出④正确.【详解】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°-45°)=67.5°,∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正确;综上所述,结论正确的是①②③④共4个.故选:D.【考点】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.2、C【解析】【分析】根据菱形的性质,结合AB=AC,得出DF为△ABC的中位线,DF∥BC,,从而得出AE为△ABC的高,得出,再根据菱形的面积公式,即可得出菱形的面积.【详解】解:∵四边形ADEF为菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴,,,,,∴CF=EF,DE=DB,,,∴DF∥BC,,,,,,,即,,故C正确.故选:C.【考点】本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF为△ABC的中位线,是解题的关键.3、B【解析】【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM=ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM=ON+MN最大,∵,则△ABO为等腰直角三角形,∴AB=,N为AB的中点,∴ON=,又∵M为AC的中点,∴MN为△ABC的中位线,BC=1,则MN=,∴OM=ON+MN=,∴OM的最大值为故答案选:B.【考点】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM=ON+MN最大.4、D【解析】【分析】由图2,可知BP=6,S△ABP=12,由图1翻折可知,AQ⊥BP,进而得出AQ=4,由勾股定理,可知BC=AB=5,菱形ABCD的面积为BC×AQ即可求出.【详解】解:由图2,得BP=6,S△ABP=12∴AQ=4由翻折可知,AQ⊥BP由勾股定理,得BC=AB==5∴菱形ABCD的面积为BC×AQ=5×4=20故选:D【考点】本题是一道几何变换综合题,解决本题主要用到勾股定理,翻折的性质,根据函数图象找出几何图形中的对应关系是解决本题的关键.5、C【解析】【分析】先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.【详解】解:样本中身高不低于170cm的频率,所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.故选:C.【考点】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.6、D【解析】【分析】根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.【详解】解:设直角三角形的两条直角边分别为x、y,∵斜边上的中线为d,∴斜边长为2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面积为S,∴,则2xy=4S,即(x+y)2=4d2+4S,∴∴这个三角形周长为:,故选D.【考点】本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.7、D【解析】【分析】利用一元二次方程的定义和根的判别式的意义得到k≠0且△=(-2)2-4k×(-3)≥0,然后求出两不等式的公共部分即可.【详解】解:根据题意得k≠0且△=(-2)2-4k×(-3)≥0,解得且k≠0.故选:D.【考点】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一元二次方程的定义.二、多选题1、AEBCD【解析】【分析】因为四边形ABCD是平行四边形,要成为矩形加上一个角为直角或对角线相等即可;要使其成为菱形,加上一组邻边相等或对角线垂直均可.【详解】A选项:∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形.(有一个角是直角的平行四边形是矩形)B选项:∵AC⊥BD,四边形ABCD是平行四边形,∴四边形ABCD是菱形.(对角线互相垂直的平行四边形是菱形)C选项:∵AB=BC,四边形ABCD是平行四边形,∴四边形ABCD是菱形.(邻边相等的平行四边形是菱形)D选项:如图:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴▱ABCD是菱形;E选项:∵AO=DO,四边形ABCD是平行四边形,∴AC=BD,∴四边形ABCD是矩形.(对角线互相平分且相等的平行四边形是矩形)故选:AE,BCD.【考点】考查了菱形和矩形的判定,解题关键是掌握平行四边形的性质和菱形、矩形的判定方法.2、ABD【解析】【分析】利用平行四边形、矩形、菱形及正方形的判定方法分别判断即可.【详解】A选项:有一组邻边相等的平行四边形是菱形,故原命题错误,是假命题,符合题意;B选项:一组对边平行且相等的四边形是平行四边形,故原命题错误,是假命题,符合题意;C选项:两条对角线相等的平行四边形是矩形,故原命题正确,是真命题,不符合题意;D选项:两条对角线互相垂直且相等的平行四边形是正方形,故原命题错误,是假命题,符合题意.故选:ABD.【考点】考查了平行四边形、菱形、矩形和正方形的判定,解题关键是熟练掌握特殊四边形的判定方法.3、AB【解析】【分析】根据只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【详解】解:A、分母含有未知数,一定不是一元二次方程,故本选项符合题意;B、含有两个未知数,一定不是一元二次方程,故本选项符合题意;C、当a=0时,不是一元二次方程,当a≠0时,是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项不符合题意.故选:AB.【考点】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.三、填空题1、(﹣1,5)【解析】【详解】【分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.【详解】如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线GM,垂足为M,连接GE、FO交于点O′,∵四边形OEFG是正方形,∴OG=EO,∠GOM+∠EOH=90°∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,,∴△OGM≌△EOH(ASA),∴GM=OH=2,OM=EH=3,∴G(﹣3,2),∴O′(﹣,),∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5),故答案是:(﹣1,5).【考点】本题考查了正方形的性质、全等三角形的判定与性质、中点坐标公式等,正确添加辅助线以及熟练掌握和运用相关内容是解题的关键.2、x=或x=2【解析】【分析】根据一元二次方程的解法解出答案即可.【详解】当x-2=0时,x=2,当x-2≠0时,4x=1,x=,故答案为:x=或x=2.【考点】本题考查解一元二次方程,本题关键在于分情况讨论.3、2【解析】【详解】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.4、【解析】【分析】列举出所有情况,看球的顺序依次是“红黄蓝”的情况数占所有情况数的多少即可.【详解】解:画出树形图:共有27种情况,球的顺序依次是“红黄蓝”的情况数有1种,所以概率为.故答案为:.【考点】考查用列树状图的方法解决概率问题;得到球的顺序依次是“红黄蓝”的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.5、.【解析】【分析】先连接PC,判定四边形ECFP是矩形,得到EF=PC,再根据当PC最小时,EF也最小,根据垂线段最短,可得当CP⊥AB时,PC最小,最后根据面积法,求得CP的长即可得到线段EF长的最小值.【详解】解:连接PC,∵PE⊥BC,PF⊥CA,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,∵垂线段最短,∴当CP⊥AB时,PC最小,∵AC=1,BC=2,∴AB=,又∵当CP⊥AB时,×AC×BC=×AB×CP,∴.∴线段EF长的最小值为.故答案为:.【考点】本题主要考查了矩形的判定与性质,勾股定理以及垂线段最短的综合应用,解决问题的关键是运用矩形对角线相等的性质进行求解.6、3【解析】【分析】先根据一元二次方程的根与系数的关系可得,再根据可得一个关于的方程,解方程即可得的值.【详解】解:由题意得:,,,化成整式方程为,解得或,经检验,是所列分式方程的增根,是所列分式方程的根,故答案为:3.【考点】本题考查了一元二次方程的根与系数的关系、解分式方程,熟练掌握一元二次方程的根与系数的关系是解题关键.7、AB=AD(答案不唯一)【解析】【分析】根据平行四边形的判定证出四边形ABCD是平行四边形,根据菱形的判定证出即可.【详解】解:添加的条件是AB=AD.理由如下:∵ABCD,ADBC,∴四边形ABCD是平行四边形,若AB=AD,∴四边形ABCD是菱形.【考点】本题主要考查了菱形的判定、平行四边形的判定等,能根据菱形的判定定理正确地添加条件是解此题的关键.8、-3【解析】【分析】由题意可把x=2代入一元二次方程进行求解a的值,然后再进行求解方程的另一个根.【详解】解:由题意把x=2代入一元二次方程得:,解得:,∴原方程为,解方程得:,∴方程的另一个根为-3;故答案为-3.【考点】本题主要考查一元二次方程的解及其解法,熟练掌握一元二次方程的解及其解法是解题的关键.9、【解析】【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:.【考点】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.10、1【解析】【分析】利用因式分解法求出x1,x2,再根据根的关系即可求解.【详解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案为:1.【考点】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的运用.四、解答题1、(1)k>﹣;(2)x1=﹣3,x2=2.【解析】【分析】(1)根据判别式的意义得△=12-4×1(-k)=1+4k>0,然后解不等式即可;(2)利用因式分解法解一元二次方程即可.【详解】(1)∵方程有两个不相等的实数根,∴△=12﹣4×1(﹣k)=1+4k>0,解得:k>﹣;(2)把k=6代入原方程得:x2+x=6,整理得:x2+x﹣6=0,分解因式得:(x+3)(x﹣2)=0,解得:x1=﹣3,x2=2.【考点】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根;也考查了解一元二次方程.2、(1);(2)【解析】【分析】(1)直接运用一元二次方程根的判别式列不等式解答即可;(2)先运用求根公式求解,然后根据根为整数以及二次根式有意义的条件列式解答即可.【详解】解:(1)∵关于的方程有两个实数根,∴,解得,;(2)由题意得,,∵为整数,且为正整数,∴或,又∵∴.【考点】本题主要考查了一元二次方程根的判别式、运用公式法解一元二次方程等知识点,灵活运用相关知识点成为解答本题的关键.3、(1)见解析(2)当AC=2AB时,四边形EGCF是矩形.理由见解析【解析】【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,中点证出BE=DF,证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由全等可以推出EG=CF,又因为∠OEG=90°,得出四边形EGCF是矩形,即可得出结论.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF.∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF.在△ABE和△CDF中,,∴△ABE≌△CDF(SAS).(2)解:当AC=2AB时,四边形EGCF是矩形.理由如下:∵AC=2OA,AC=2AB,∴AB=OA=OC=CD.∵点E是OB的中点,∴AG⊥OB,∴∠OEG=90°,∵OC=CD,F是OD的中点,∴CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得△ABE≌△CDF,∴AE=CF.∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形.又∵∠OEG=90°,∴四边形EGCF是矩形.【考点】本题主要考查了平行四边形的性质和判定、矩形的判定、全等三角形的判定、平行线的性质.4、(1);(2)【解析】【分析】(1)作DM⊥BC,AN⊥DM垂足分别为M、N,易知四边形MNAB是矩形,分别在Rt△ADN中求出DN,利用含60°的直角三角形求CD即可;(2)由(1)可知,四边形的面积就是△DCM与梯形ADMB的面积和.【详解】解:(1)如图作DM⊥BC,AN⊥DM垂足分别为M、N.∵∠B=∠NMB=∠MNA=90°,∴四边形MNAB是矩形,∴MN=AB=5,AN=BM,∠BAN=90°,∵∠C+∠B+∠ADC+∠BAD=360°,∠C=60°,∠B=∠ADC=90°,∴∠DAN=∠BAD﹣∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论