




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青岛版8年级数学下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、2022年新年贺词中提到“人不负青山,青山定不负人”,下列四个有关环保的图形中,是轴对称图形,但不是中心对称图形的是(
)A. B. C. D.2、下列图案中,是轴对称图形但不是中心对称图形的是(
)A. B. C. D.3、若m=1+,则以下对m的值估算正确的是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<44、小明从家出发向正北方向走了150m,接着向正东方向走到离家直线距离为250m远的地方,那么小明向正东方向走的路程是()A.250m B.200m C.150m D.100m5、下列命题是真命题的是(
)A.对角线相等的平行四边形是菱形.B.有一组邻边相等的平行四边形是菱形.C.对角线相互垂直且相等的四边形是菱形.D.有一组对边平行且相等的四边形是菱形.6、下列各式中,正确的是(
)A. B. C. D.7、如图,正方形ABCD的项点A,D在数轴上,且点A表示的数为-1,点D表示的数为0,用圆规在数轴上截取,则点E所表示的数为(
)A.1 B. C. D.8、已知是二元一次方程组mx−ny=8nx+my=1的解,则的立方根为(
)A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,直线与直线交于点,由图象可知,不等式的解为______.2、以下图形:①线段,②等边三角形,③平行四边形,④矩形,⑤圆,其中既是轴对称图形又是中心对称图形的序号是________.3、如图,在平面直角坐标系xOy中,矩形OABC的顶点B坐标为(12,5),D是CB边上一动点,(D不与BC重合),以AD为边作正方形ADEF,连接BE、BF,若为等腰三角形,则正方形ADEF的边长_____.4、的平方根为_____,的绝对值为____.5、已知函数y1=-2x与y2=x+b的图像相交于点A(-1,2),则关于x的不等式-2x>x+b的解集是_____.6、如图,点A、B在x轴上,点C在y轴的正半轴上,且AC=BC=,OC=1,P为线段AB上一点,则PC2+PA⋅PB的值为_____.7、将函数y=2x的图像沿y轴向下平移4个单位长度,所得到的图像对应的函数表达式是__________.三、解答题(7小题,每小题10分,共计70分)1、如图,在△ABC中,∠ACB=90°,BC>AC,CD⊥AB于点D,点E是AB的中点,连接CE.(1)若AC=3,BC=4,求CD的长;(2)求证:BC2﹣AC2=2DE•AB;(3)求证:CE=AB.2、如图,在平面直角坐标系中,直线l:分别交x轴,y轴于点A、B,将△AOB绕点O顺时针旋转90°后得到.(1)求直线的解析式;(2)若直线与直线l相交于点C,求的面积.3、在平面直角坐标系中,△ABC各顶点的坐标分别为A(-3,2),B(4,1),C(0,-3).请在图中作出△ABC关于原点对称的△A′B′C′,并写出△A′B′C′各顶点的坐标.4、如图,已知线段,利用尺规作图的方法作一个正方形,使为正方形的对角线(保留作图痕迹,不要求写作法).5、在平面直角坐标系中,将两块分别含45°和30°的直角三角板按如图放置(∠C=30°,AC=2AB),BC=.(1)点A坐标为____________,点B坐标为______________,点C坐标为________________;(2)平面内存在点D(与点A不重合),使得△DBC与△ABC全等,请你直接写出点D的坐标.6、计算:(1);(2).7、某邮递公司收费方式有两种:方式一:邮递物品不超过3千克,按每千克2元收费;超过3千克,3千克以内每千克2元,超过的部分按每千克1.5元收费.方式二:基础服务费4元,另外每千克加收1元.小王通过该邮递公司邮寄一箱物品的质量为x千克(x>3).(1)请分别直接写出小王用两种付费方式所需的邮递费用y(元)与x(千克)之间的函数关系式,并在如图所示的直角坐标系中画出图象;(2)若两种付费方式所需邮递费用相同,求这箱物品的质量;(3)若采用“方式二”所需要邮递费用比采用“方式一”便宜5元,求这箱物品的质量.-参考答案-一、单选题1、D【解析】【分析】轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称.根据轴对称图形、和中心对称图形的概念,即可完成解题.【详解】解:根据轴对称和中心对称的概念,选项A、B、C、D中,是轴对称图形的是B、D,是中心对称图形的是B.故选:B.【点睛】本题主要轴对称图形、中心对称图形的概念,熟练掌握知识点是解答本题的关键.2、B【解析】【分析】根据轴对称图形与中心对称图形的概念逐一判断即可得答案.【详解】A.既不是轴对称图形也不是中心对称图形,不符合题意,B.是轴对称图形但不是中心对称图形,符合题意,C.不是轴对称图形但是中心对称图形,不符合题意,D.既不是轴对称图形也不是中心对称图形,不符合题意,故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、C【解析】【分析】根据的范围进行估算解答即可.【详解】解:∵1<<2,∴2<1+<3,即2<m<3,故选:C.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4、B【解析】【分析】根据题意画出图形,进而利用勾股定理得出答案.【详解】解:如图所示:由题意可得:,由勾股定理得,故选B【点睛】此题考查了勾股定理的应用,解题的关键是理解题意,正确画出图形.5、B【解析】【分析】根据矩形判定,菱形的判定,正方形判定,平行四边形判定进行解答.【详解】解:A、对角线相等的平行四边形是矩形,A错误;B、一组邻边相等的平行四边形是菱形,B正确;C、对角线互相垂直的平行四边形是菱形,C错误;D、有一组对边平行且相等的四边形是平行四边形,D错误;故选B.【点睛】本题考查矩形判定,菱形的判定,平行四边形判定,熟练掌握矩形,菱形正方形平行三角形的定义和判定方法是解题关键.6、A【解析】【分析】分别根据立方根及算术平方根的定义对各选项进行逐一解答即可.【详解】A、正确,举例:;B、不正确,;C、不正确,左边是算术平方根,应等于12;D、不正确,左边是算术平方根,应等于4.故选:A.【点睛】本题考查立方根,算术平方根,掌握它们的定义是解题的关键.7、C【解析】【分析】利用勾股定理求出,再根据求出点E所表示的数.【详解】解:,,表示的数为:,故选:C.【点睛】本题考查了勾股定理,实数与数轴,解题的关键是是利用勾股定理求出.8、D【解析】【分析】将代入,得到关于,的方程组,再用代入消元法求解方程组,得到,的值,即可求得的值,再根据立方根的定义即可求解.【详解】解:是二元一次方程组的解由得,将代入,得,解得,将代入,得,,的立方根为,的立方根为,故选:D.【点睛】本题考查了二元一次方程组的解,熟练掌握二元一次方程组的解法、立方根的求法是解题的关键.二、填空题1、【解析】【分析】观察图象知,直线的图象位于直线的图象上方或两直线相交时,函数的函数值大于或等于函数的函数值,从而可求得的解.【详解】由图象知:不等式的解为故答案为:【点睛】本题考查了两直线相交与一元一次不等式的关系,数形结合是关键.2、①④⑤【解析】【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【详解】】解:①线段既是轴对称图形,也是中心对称图形,故本选项符合题意;②等边三角形是轴对称图形,不是中心对称图形,故本选项不合题意;③平行四边形不是轴对称图形,是中心对称图形,故本选项不合题意;④矩形既是轴对称图形,也是中心对称图形,故本选项符合题意;⑤圆既是轴对称图形,也是中心对称图形,故本选项符合题意.故答案为:①④⑤.【点睛】本题考查了中心对称图形以及轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180°后和原图形重合.3、或或【解析】【分析】分三种情况讨论,由等腰三角形的性质和勾股定理可求正方形ADEF的边长.【详解】解:若BE=EF,当点B与点D重合时,AD=AB=5,舍去,当点B与点D不重合时,如图,过点E作EH⊥DB于H,∵∠EDH+∠ADB=90°,∠ADB+∠DAB=90°,∴∠EDH=∠DAB,且AD=DE,∠EHD=∠ABD=90°,∴△ADB≌△DEH(AAS),∴DH=AB=5,∵BE=EF,EF=DE,∴DE=BE,且EH⊥DB,∴DH=BH=5,∴DB=10,∴AD=;当BE=BF时,∴∠BEF=∠BFE,∴∠DEB=∠AFB,且DE=AF,BE=BF,∴△DEB≌△AFB(AAS),∴DB=AB=5,∴AD=;若BF=EF,如图,过点F作FH⊥AB于H,∵∠DAB+∠FAB=90°,且∠DAB+∠BDA=90°,∴∠BDA=∠FAB,且AD=AF,∠ABD=∠AHF=90°,∴△ABD≌△FHA(AAS),∴AH=DB,∵EF=BF,EF=AF,∴BF=AF,且FH⊥AB,∴AH=BH=,∴DB=,∴AD==,故答案为:或或.【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.4、
【解析】【分析】先计算出的立方根,再根据平方根的定义进行求解;根据绝对值的定义进行求解.【详解】解:①,的平方根是,的平方根是;②的绝对值是.故答案为:;.【点睛】本题了平方根和绝对值和立方根,理解平方根和绝对值的定义是解答关键.正数的平方根有两个,它们互为相反数,负数的绝对值是正数.5、x<-1【解析】【分析】在同一坐标系中画出两个函数的图象,根据图象即可得出答案.【详解】解:函数y1=-2x与y2=x+b的图象如图所示:要满足-2x>x+b,即y1>y2,则图象上两直线交点的左边符合题意,即x<-1,故答案为:x<-1.【点睛】此题考查了一元一次不等式与一次函数图象的关系,用一次函数的函数思想求不等式的解集是比较常见的题型,关键在于理解不等关系反映在函数图象上的几何意义.6、5【解析】【分析】由勾股定理可求AO=BO=2,设点P(x,0),由勾股定理和两点之间距离公式可求解.【详解】解:∵AC=BC=,OC=1,∴AO=BO===2,设点P(x,0),则PA=x+2,PB=2﹣x,PC2=x2+1,∴PC2+PA•PB=x2+1+(x+2)(2﹣x)=5,故答案为:5.【点睛】本题考查了勾股定理,坐标与图形性质,利用点的坐标表示线段的长是解题的关键.7、【解析】【分析】根据上加下减即可得.【详解】解:将函数y=2x的图像沿y轴向下平移4个单位长度,所得到的图像对应的函数表达式,故答案为:.【点睛】本题考查了一次函数与几何变换,解题的关键是掌握上加下减.三、解答题1、(1)(2)见解析(3)见解析【解析】【分析】(1)根据勾股定理求出AB,根据三角形的面积公式计算,求出CD;(2)根据题意得到BD﹣AD=2DE,根据勾股定理计算即可证明;(3)延长CE至点F,使EF=CE,连结AF,证明△AEF≌△BEC(SAS),根据全等三角形的性质得到∠B=∠EAF,AF=BC,再证明△ACF≌△CAB,得到CF=AB,证明结论.(1)解:在△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理得:AB===5,∵∠ACB=90°,CD⊥AB,∴S△ABC=AC•BC=AB•DE,即×3×4=×5×CD,解得:CD=;(2)证明:∵点E是AB的中点,∴AE=BE,∴BD﹣AD=(BE+DE)﹣(AE﹣DE)=BE﹣AE+2DE=2DE,∵CD⊥AB,∴BC2=BD2+CD2,AC2=AD2+CD2,∴BC2﹣AC2=(BD2+CD2)﹣(AD2+CD2)=BD2﹣AD2=(BD+AD)(BD﹣AD)=AB•2DE=2DE•AB;(3)证明:延长CE至点F,使EF=CE,连结AF,在△AEF和△BEC中,,∴△AEF≌△BEC(SAS),∴∠B=∠EAF,AF=BC,∵∠ACB=90°,∴∠B+∠CAB=∠EAF+∠CAB=90°,∴∠CAF=∠ACB=90°,∵AC=CA,∴△ACF≌△CAB(SAS),∴CF=AB,∵CF=2CE,∴CE=AB.【点睛】本题考查的是全等三角形的判定和性质、三角形的面积计算、勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.2、(1)(2)【解析】【分析】(1)根据直线l的解析式先确定出点A、B的坐标,根据旋转的性质结合图象可得,设直线的解析式为(为常数),将两点代入求解即可得;(2)联立两个一次函数求解可得点,结合图形得出,利用三角形面积公式求解即可得.(1)解:由直线分别交x轴、y轴于点A、B,当时,;当时,;∴,∵绕点顺时针旋转而得到,∴,故,设直线的解析式为(为常数),∴,解得:,∴直线的解析式为;(2)解:联立两个一次函数为:,解得:,∴点,∵,∴,∴的面积为.【点睛】题目主要考查直线与坐标轴交点问题及利用待定系数法确定函数解析式,旋转的性质,两个函数交点问题等,理解题意,结合图象,综合运用一次函数的基本性质是解题关键.3、见解析,,,【解析】【分析】利用关于原点对称的点的坐标特征写出、、的坐标,然后描点连线即可.【详解】解:如图,△即为所求;△各顶点的坐标分别为:,,.【点睛】本题考查了作图复杂作图,关于原点对称的点的坐标,解题的关键是找到对应点,顺次连接关于原点对称后的图形.4、见解析【解析】【分析】先作的垂直平分线,交于点,再以为圆心,的长度为半径在两侧画弧截取,连接,则正方形为所作.【详解】解:如图,正方形为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了正方形的判定与性质.5、(1)(2)【解析】【分析】(1)利用勾股定理先求解再利用等腰直角三角形的性质求解可得的坐标,如图,过作于再证明再利用勾股定理可得答案;(2)分三种情况讨论:如图,把沿对折可得:如图,取的中点延长至D,使连接如图,取的中点延长至D,使连接结合中点坐标公式可得答案.(1)解:∠C=30°,AC=2AB,BC=,解得:解得:如图,过作于解得:故答案为:(2)解:如图,把沿对折可得:结合中点坐标可得:如图,取的中点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 晋城口碑营销活动策划方案(3篇)
- 淄博隔声板施工方案(3篇)
- 印度农田施工方案(3篇)
- 取样员考试题库及答案
- 心理学考研题目及答案
- 小学整数加减法题目及答案
- 冬请允许我拥抱你250字12篇范文
- 数学课《几何图形变换与性质》教学实践
- 农村科技研发与应用推广合同
- 一条路到达一个地方(14篇)
- 《HSK标准教程1》第3课课件
- GB∕T 3185-2016 氧化锌(间接法)
- 三级安全教育考试试题及(全)
- DB37∕T 5023-2014 非透明幕墙建筑外保温系统应用技术规程
- 电网调度自动化维护员岗位培训题库简答题
- 中国古代文学史《第二章:诗经》PPT课件(完整版)
- 云南省地质灾害群测群防手册
- 高级催乳师培训课程讲义
- 第三届韬奋杯全国出版社青编校大赛校对试题(已编辑)
- 关于BT项目主要法律规定
- 银发【2007】246号
评论
0/150
提交评论