【备考期末】朝阳市中考数学期末二次函数和几何综合汇编_第1页
【备考期末】朝阳市中考数学期末二次函数和几何综合汇编_第2页
【备考期末】朝阳市中考数学期末二次函数和几何综合汇编_第3页
【备考期末】朝阳市中考数学期末二次函数和几何综合汇编_第4页
【备考期末】朝阳市中考数学期末二次函数和几何综合汇编_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【备考期末】朝阳市中考数学期末二次函数和几何综合汇编一、二次函数压轴题1.探究:已知二次函数y=ax2﹣2x+3经过点A(﹣3,0).(1)求该函数的表达式;(2)如图所示,点P是抛物线上在第二象限内的一个动点,且点P的横坐标为t,连接AC,PA,PC.①求△ACP的面积S关于t的函数关系式;②求△ACP的面积的最大值,并求出此时点P的坐标.拓展:在平面直角坐标系中,点M的坐标为(﹣1,3),N的坐标为(3,1),若抛物线y=ax2﹣2x+3(a<0)与线段MN有两个不同的交点,请直接写出a的取值范围.2.如图,在平面直角坐标系中,抛物线与轴相交于两点,点为抛物线的顶点.点为轴上的动点,将抛物线绕点旋转,得到新的抛物线,其中旋转后的对应点分别记为.(1)若,求原抛物线的函数表达式;(2)在(1)条件下,当四边形的面积为时,求的值;(3)探究满足什么条件时,存在点,使得四边形为菱形?请说明理由.3.如图,抛物线()交直线:于点,点两点,且过点,连接,.(1)求此抛物线的表达式与顶点坐标;(2)点是第四象限内抛物线上的一个动点,过点作轴,垂足为点,交于点.设点的横坐标为,试探究点在运动过程中,是否存在这样的点,使得以,,为顶点的三角形是等腰三角形.若存在,请求出此时点的坐标,若不存在,请说明理由;(3)若点在轴上,点在抛物线上,是否存在以点,,,为顶点的平行四边形?若存在,求点的坐标;若不存在,请说明理由.4.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?5.综合与探究如图,抛物线y=﹣x2﹣x+与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,直线l经过B、C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CD、BD.设点M运动的时间为t(t>0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)①请直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时t的值;②求点M运动的过程中线段CD长度的最小值.6.某数学兴趣小组在探究函数y=x2﹣2|x|+3的图象和性质时,经历了以下探究过程:(1)列表(完成下列表格).x…﹣3﹣2﹣1﹣0123…y…632236…(2)描点并在图中画出函数的大致图象;(3)根据函数图象,完成以下问题:①观察函数y=x2﹣2|x|+3的图象,以下说法正确的有(填写正确的序号)A.对称轴是直线x=1;B.函数y=x2﹣2|x|+3的图象有两个最低点,其坐标分别是(﹣1,2)、(1,2);C.当﹣1<x<1时,y随x的增大而增大;D.当函数y=x2﹣2|x|+3的图象向下平移3个单位时,图象与x轴有三个公共点;E.函数y=(x﹣2)2﹣2|x﹣2|+3的图象,可以看作是函数y=x2﹣2|x|+3的图象向右平移2个单位得到.②结合图象探究发现,当m满足时,方程x2﹣2|x|+3=m有四个解.③设函数y=x2﹣2|x|+3的图象与其对称轴相交于P点,当直线y=n和函数y=x2﹣2|x|+3图象只有两个交点时,且这两个交点与点P所构成的三角形是等腰直角三角形,求n的值.7.问题发现:如图1,在△ABC中,∠C=90°,分别以AC,BC为边向外侧作正方形ACDE和正方形BCFG.(1)△ABC和△DCF面积的关系是______________;(请在横线上填写“相等”或“不等”)(2)拓展探究:若∠C≠90°,(1)中的结论还成立吗?若成立,请结合图2给出证明;若不成立,请说明理由;(3)解决问题:如图3,在四边形ABCD中,AC⊥BD,且AC与BD的和为10,分别以四边形ABCD的四条边为边向外侧作正方形ABFE、正方形BCHG、正方形CDJI,正方形DALK,运用(2)的结论,图中阴影部分的面积和是否有最大值?如果有,请求出最大值,如果没有,请说明理由.图1图2图38.综合与探究如图,在平面直角坐标系中,抛物线与轴分别交于点和点(点在点的左侧),交轴于点.点是线段上的一个动点,沿以每秒1个单位长度的速度由点向点运动,过点作轴,交抛物线于点,交直线于点,连接.(1)求直线的表达式;(2)在点运动过程中,运动时间为何值时,?(3)在点运动过程中,的周长是否存在最小值?若存在,求出此时点的坐标;若不存在,请说明理由.9.如图,抛物线y=x2﹣2x﹣8与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A、C、Q为顶点的三角形是等腰三角形?若存在,请求出此时点Q的坐标;若不存在,请说明理由.10.小明结合自己的学习经验,对新函数y=的解析式、图象、性质及应用进行探究:已知当x=0时,y=2;当x=1时,y=1.(1)函数解析式探究:根据给定的条件,可以确定由该函数的解析式为:.(2)函数图象探究:①根据解析式,补全如表,则m=,n=.②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.x……﹣4﹣3﹣2﹣1﹣012n4……y……m21……(3)函数性质探究:请你结合函数的解析式及所画图象,写出该函数的一条性质:.(4)综合应用:已知函数y=|x﹣|的图象如图所示,结合你所画的函数图象,直接写出不等式|x﹣|≤.二、中考几何压轴题11.如图l,在正方形ABCD中,AB=8,点E在AC上,且,过点作于点,交于点,连接,.(问题发现)(1)线段与的数量关系是________,直线与所夹锐角的度数是___________;(拓展探究)(2)当绕点顺时针旋转时,上述结论是否成立?若成立,请写出结论并结合图2给出证明;若不成立,请说明理由;(解决问题)(3)在(2)的条件下,当点到直线的距离为2时,请直接写出的长.12.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.13.如图1所示,边长为4的正方形与边长为的正方形的顶点重合,点在对角线上.(问题发现)如图1所示,与的数量关系为________;(类比探究)如图2所示,将正方形绕点旋转,旋转角为,请问此时上述结论是否还成立?如成立写出推理过程,如不成立,说明理由;(拓展延伸)若点为的中点,且在正方形的旋转过程中,有点、、在一条直线上,直接写出此时线段的长度为________14.折纸是一种许多人熟悉的活动.近些年,经过许多人的努力,已经找到了多种将正方形折纸的一边三等分的精确折法,下面探讨其中的一种折法:(综合与实践)操作一:如图1,将正方形纸片ABCD对折,使点A与点D重合,点B与点C重合,再将正方形纸片ABCD展开,得到折痕MN;操作二:如图2,将正方形纸片ABCD的右上角沿MC折叠,得到点D的对应的点为D′;操作三:如图3,将正方形纸片ABCD的左上角沿MD′折叠再展开,折痕MD′与边AB交于点P;(问题解决)请在图3中解决下列问题:(1)求证:BP=D′P;(2)AP:BP=;(拓展探究)(3)在图3的基础上,将正方形纸片ABCD的左下角沿CD′折叠再展开,折痕CD′与边AB交于点Q.再将正方形纸片ABCD过点D′折叠,使点A落在AD边上,点B落在BC边上,然后再将正方形纸片ABCD展开,折痕EF与边AD交于点E,与边BC交于点F,如图4.试探究:点Q与点E分别是边AB,AD的几等分点?请说明理由.15.问题提出(1)如图(1),在等边三角形ABC中,点M是BC上的任意一点(不含端点B、C),连接AM,以AM为边作等边三角形AMN,连接CN,则∠ACN=°.类比探究(2)如图(2),在等边三角形ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中的结论还成立吗?请说明理由.拓展延伸(3)如图(3),在等腰三角形ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连接AM,以AM为边作等腰三角形AMN,使AM=MN,连接CN.添加一个条件,使得∠ABC=∠ACN仍成立,写出你所添加的条件,并说明理由.16.△ABC中,∠BAC=α°,AB=AC,D是BC上一点,将AD绕点A顺时针旋转α°,得到线段AE,连接BE.(1)(特例感知)如图1,若α=90,则BD+BE与AB的数量关系是.(2)(类比探究)如图2,若α=120,试探究BD+BE与AB的数量关系,并证明.(3)(拓展延伸)如图3,若α=120,AB=AC=4,BD=,Q为BA延长线上的一点,将QD绕点Q顺时针旋转120°,得到线段QE,DE⊥BC,求AQ的长.17.(1)问题提出:如图①,在矩形中,,点为边上一点,连接,过点作对角线的垂线,垂足为,点为的中点,连接,,.可知的形状为______;(2)深人探究:如图②,将在平面内绕点顺时针旋转,请判断的形状是否变化,并说明理由;(提示:延长到,使;延长到,使,连接,,,构造全等三角形进行证明)(3)拓展延伸:如果,,在旋转过程中,当点,,在同一条直线上时,请直接写出的长.18.综合与实践(问题背景)如图1,矩形中,.点E为边上一点,沿直线将矩形折叠,使点C落在边的点处.(问题解决)(1)填空:的长为______.(2)如图2,将沿线段向右平移,使点与点B重合,得到与交于点F,与交于点G.求的长;(拓展探究)(3)在图2中,连接,则四边形是平行四边形吗?若是,请予以证明;若不是,请说明理由.19.综合与实践背景阅读:“旋转”即物体绕一个点或一个轴做圆周运动.在中国古典专著《百喻经·口诵乘船法而不解用喻》中记载:“船盘回旋转,不能前进.”而图形旋转即:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转,这个定点叫做旋转中心,转动的角叫做旋转角.综合实践课上,“睿智”小组专门探究了正方形的旋转,情况如下:在正方形中,点是线段上的一个动点,将正方形绕点顺时针旋转得到正方形(点,,,分别是点,,,的对应点).设旋转角为().操作猜想:(1)如图1,若点是中点,在正方形绕点旋转过程中,连接,,,则线段与的数量关系是_______;线段与的数量关系是________.探究验证:(2)如图2,在(1)的条件下,在正方形绕点旋转过程中,顺次连接点,,,,.判断四边形的形状,并说明理由.拓展延伸:(3)如图3,若,在正方形绕点顺时针旋转的过程中,设直线交线段于点.连接,并过点作于点.请你补全图形,并直接写出的值.20.(1)问题发现如图1,△ABC与△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,直线BD,CE交于点F,直线BD,AC交于点G.则线段BD和CE的数量关系是,位置关系是;(2)类比探究如图2,在△ABC和△ADE中,∠ABC=∠ADE=α,∠ACB=∠AED=β,直线BD,CE交于点F,AC与BD相交于点G.若AB=kAC,试判断线段BD和CE的数量关系以及直线BD和CE相交所成的较小角的度数,并说明理由;(3)拓展延伸如图3,在平面直角坐标系中,点M的坐标为(3.0),点N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转90得到线段MP,连接NP,OP.请直接写出线段OP长度的最小值及此时点N的坐标.【参考答案】***试卷处理标记,请不要删除一、二次函数压轴题1.探究:(1);(2)①,②的面积的最大值是,此时点的坐标为,拓展:.【分析】(1)由待定系数法易求解析式;(2)过点作于点,交于点.设点的坐标为,由可得关于t的二次函数,进而可求最大值.(3)根据抛物线与MN的位置关系可知当抛物线经过M点时,a取最大值.【详解】探究:(1)∵抛物线经过点,∴,解得.∴抛物线的表达式为.(2)①过点作于点,交于点.设直线的解析式为,将、代入,,解得:,∴直线的解析式为.∵点在抛物线上,点在直线上,∴点的坐标为,点的坐标为,∴,∴.②∵,∴当时,,当时,.∴的面积的最大值是,此时点的坐标为.[拓展]:抛物线y=ax2−2x+3(a<0),当x=1时,y=a-2+3=a+1<3,故抛物线右边一定与MN有交点,当x=-1,y=a+2+3=a+5,在M点或下方时,抛物线左边边一定与MN有交点,即a+5≤3;∴;【点睛】此题是二次函数综合题,主要考查了待定系数法,三角形面积的计算,极值的确定,关键是确定出抛物线解析式,难点是数形结合确定a点的求值范围.2.B解析:(1)(2);(3)时,存在点,使得四边形为菱形,理由见解析【分析】(1)因为,所以,将代入得关于b和c的二元一次方程组,解方程组得到b和c即可求得原抛物线的解析式;(2)连接,延长与轴交于点,根据题(1)可求出点B、C的坐标,继而求出直线BC的解析式及点E的坐标,根据题意易知四边形是平行四边形,继而可知,由此可知ME=10,继而即可求解点M的坐标;(3)如图,过点作轴于点,当平行四边形为菱形时,应有,故点在之间,继而可证根据相似三角形的性质可得代入数据即可求解.【详解】解:(1)∵,∴将代入得:解得:∴原抛物线的函数表达式为:;(2)连接,并延长与轴交于点,二次函数的项点为直线的解析式为:抛物线绕点旋转四边形是平行四边形,(3)如图,过点作轴于点当平行四边形为菱形时,应有,故点在之间,当时,即二次函数的顶点为,,∴,所以时,存在点,使得四边形为菱形.【点睛】本题考查二次函数的综合应用,涉及到平行四边形的性质、菱形的性质,难度较大,解题的关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质及二次函数的性质,注意挖掘题目中的隐藏条件.3.A解析:(1)顶点坐标为;(2)存在,,;(3)或或.【分析】(1)根据一次函数解析式求出A、C两点的坐标,把A、B、C三点代入解析式求解即可求的解析式,然后把解析式化为顶点式可求得结果.(2)先求出BC所在直线的解析式,设出P、Q两点的坐标,根据勾股定理求出AC,根据以,,为顶点的三角形是等腰三角形可分类讨论,分为AQ=AC,AC=CQ,AQ=CQ三种情况.(3)分两种情况讨论,一是F在抛物线上方,过点作轴,可得FH=4,设,可得,求出n代入即可;二是F在抛物线下方,可得,求出n的值即可,最后的结果综合两个结果即可.【详解】解:(1)∵当时,,∴;∴,;二次函数过点、,设;∵过点,∴;∴;∴;∵,∴顶点坐标为.(2)存在.设过、,;设解得:;∴;设、;在中,解得;①当时;;解得:(不合题意舍去),;∴;②当时;;解得:,(不合题意舍去);∴;③当时;;解得:(不合题意舍去);∴,;(3)当在抛物线上方时,,时;过点作轴,与全等;则;设;则;解得;,;或;当在抛物线下方时,;(不合题意舍去),;∴;∴或或.【点睛】本题主要考查了二次函数综合应用,准确分析题目条件,利用了等腰三角形、直角三角形的性质进行求解.4.A解析:(1)(2)存在,点Q的坐标为:Q(1,3)或(,);(3)PN=﹣(m﹣2)2+,当m=2时,PN的最大值为.【分析】(1)由二次函数交点式表达式,即可求解;(2)分AC=AQ、AC=CQ、CQ=AQ三种情况,利用方程或方程组求解即可得到答案;(3)利用等腰直角三角形的性质得到:PN=PQsin∠PQN=即可求解.【详解】解:(1)抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,设即:﹣12a=4,解得:则抛物线的表达式为(2)存在,理由:点A、B、C的坐标分别为(﹣3,0)、(4,0)、(0,4),则AC=5,AB=7,BC=,∠OBC=∠OCB=45°,将点B、C的坐标代入一次函数表达式:y=kx+b并解得:y=﹣x+4…①,同理可得直线AC的表达式为:,①当AC=AQ时,如图1,则AC=AQ=5,设:QM=MB=n,则AM=7﹣n,由勾股定理得:解得:n=3或4(舍去4),故点Q(1,3);②当AC=CQ时,如图1,CQ=5,则BQ=BC﹣CQ=则QM=MB=,故点Q(,);③当CQ=AQ时,则在的垂直平分线上,设直线AC的中点为K(,2),过点与CA垂直直线的表达式中的k值为,直线的表达式为:②,联立①②并解得:(舍去);故点Q的坐标为:Q(1,3)或(,);(3)设点,则点Q(m,﹣m+4),∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN,PN=PQsin∠PQN=∵∴PN有最大值,当m=2时,PN的最大值为:.【点睛】主要考查了二次函数的解析式的求法和等腰三角形的存在性问题,线段长度的最值问题,要会利用数形结合的思想把代数和几何图形结合起来.5.A解析:(1)A(﹣3,0),y=﹣x+;(2)①点D落在直线l上时,t=6﹣2;②CD的最小值为.【分析】(1)解方程求出点A、点B的坐标,根据二次函数的性质求出点C的坐标,利用待定系数法求出直线l的表达式;(2)①分点M在AO上运动、点M在OB上运动两种情况,DN⊥x轴于N,证明△MCO≌△DMN,根据全等三角形的性质得到MN=OC=,DN=OM=3﹣t,得到点D的坐标,根据一次函数图象上点的坐标特征求出t;②根据等腰直角三角形的性质、垂线段最短解答.【详解】(1)当y=0时,﹣x2﹣x+=0,解得x1=1,x2=﹣3,∵点A在点B的左侧,∴A(﹣3,0),B(1,0),当x=0时,y=,即C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得,,解得,,则直线l的表达式为y=﹣x+;(2)①如图1,当点M在AO上运动时,过点D作DN⊥x轴于N,由题意可知,AM=t,OM=3﹣t,MC⊥MD,则∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO与△DMN中,,∴△MCO≌△DMN(AAS),∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,如图2,当点M在OB上运动时,点D的坐标为:D(﹣3+t+,t﹣3)将D点坐标代入直线BC的解析式y=﹣x+得,t﹣3=﹣×(﹣3+t+)+,t=6﹣2,即点D落在直线l上时,t=6﹣2;②∵△COD是等腰直角三角形,∴CM=MD,∴线段CM最小时,线段CD长度的最小,∵M在AB上运动,∴当CM⊥AB时,CM最短,CD最短,即CM=CO=,根据勾股定理得,CD的最小值为.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、等腰三角形的性质特点.6.B解析:(1)详见解析;(2)详见解析;(3)①B、D、E;②2<m<3;③n=2或6.【分析】(1)把x=﹣,0,分别代入函数表达式即可求解;(2)描点确定函数图象;(3)①结合图象,根据二次函数的性质依次判断各项即可求解;②根据二次函数的图象即可解答;③如图,当直线y=n处于直线m或m′的位置时,由此即可求解.【详解】(1)把x=﹣,0,分别代入函数表达式得:y=,3,;故答案为,3,;(2)描点确定函数图象如下:(3)①A.对称轴是直线x=0,故错误;B.函数y=x2﹣2|x|+3的图象有两个最低点,其坐标分别是(﹣1,2)、(1,2),故正确;C.当﹣1<x<1时,函数在y轴右侧,y随x的增大而增大,故错误;D.当函数y=x2﹣2|x|+3的图象向下平移3个单位时,图象与x轴有三个公共点,正确;E.函数y=(x﹣2)2﹣2|x﹣2|+3的图象,可以看作是函数y=x2﹣2|x|+3的图象向右平移2个单位得到,正确;故答案为:B、D、E;②从图象看,2<m<3时,方程x2﹣2|x|+3=m有四个解;③如图,当直线y=n处于直线m或m′的位置时,点P和图象上的点构成等腰直角三角形,即n=2或6.【点睛】本题考查了二次函数的图象和性质,正确的识别图象,利用数形结合思想是解决问题的关键.7.B解析:(1)相等;(2)成立,理由见解析;(3)阴影部分的面积和有最大值,最大值为25【解析】解:(1)相等;(2)成立;理由如下:如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.∴∠APC=∠DQC=90°.∵四边形ACDE、四边形BCFG均为正方形,∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ.∴△APC≌△DQC(AAS),∴AP=DQ.又∵S△ABC=BC•AP,S△DFC=FC•DQ,∴S△ABC=S△DFC.(3)图中阴影部分的面积和有最大值理由:由(2)的结论可知:设AC=m,则BD=10-m,∵AC⊥BD.∴.∴∴阴影部分的面积和有最大值,最大值为258.A解析:(1);(2)或;(3)存在,【分析】(1)根据二次函数的解析式可以求出点A和点坐标,把点A和点的坐标代入联立方程组,即可确定一次函数的解析式;(2)由题意可得点P的坐标,从而可得点D的坐标,故可求得ED的长,再由A、C的坐标可知:OA=OC,即△AOC是等腰直角三角形,因DP⊥x轴,故△AEP也是等腰直角三角形,可分别得到AC、AE的长,故可得EC的长,由题意EC=ED,即可得关于t的方程,解方程即可;(3)由EP=AP,得,是定值,周长最小,就转化为最小,根据垂线段最短就可确定点的特殊位置,从而求出点的坐标.【详解】解:(1)∵抛物线与轴分别交于点和点,交轴于点,∴当时,,即,当时,,,,即,,设直线的解析式为:则,∴,∴直线的表达式:.(2)∵点沿以每秒1个单位长度的速度由点向点运动,∴,,∵轴,∴,,∴∵,,∴,,∴△AOC是等腰直角三角形,∴,由勾股定理得:,∵轴,在中,,∴△AEP也是等腰直角三角形,∴,,∴,∴当时,即或时,.(3)在中,,∴,∴的周长:.∴当最小时的周长最小.当时,最小,∵,∴,在中,,,,,∴,∴,∴.【点睛】本题是综合与探究题,此类问题的考查特点是综合性和探究性强,考查内容是一次函数解析式的确定、特殊点坐标的确定、三角形周长最小值等,渗透了分类讨论、数形结合、转化等数学思想,难度较大.9.A解析:(1)A(﹣2,0),B(4,0),C(0,﹣8);(2)存在,Q点坐标为,.【分析】(1)解方程,可求得A、B的坐标,令,可求得点C的坐标;(2)利用勾股定理计算出,利用待定系数法可求得直线BC的解析式为,可设Q(m,2m﹣8)(0<m<4),分三种情况讨论:当CQ=AC时,当AQ=AC时,当AQ=QC时,然后分别解方程求出m即可得到对应的Q点坐标.【详解】(1)当,,解得x1=﹣2,x2=4,所以,,x=0时,y=﹣8,∴;(2)设直线BC的解析式为,把,代入解析式得:,解得,∴直线BC的解析式为,设Q(m,2m﹣8)(0<m<4),当CQ=CA时,,解得,,(舍去);∴Q,当AQ=AC时,,解得:(舍去),m2=0(舍去);当QA=QC时,,解得,∴Q.综上所述,满足条件的Q点坐标为,.【点睛】本题考查了二次函数,熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质,会利用待定系数法求函数解析式,理解坐标与图形性质,会利用勾股定理表示线段之间的关系,会运用分类讨论的思想解决数学问题.10.(1)y=;(2)m=1,n=3;(3)函数存在最大值,当x=0是,y取得最大值2.(4)-1≤x≤2【分析】(1)待定系数法求解函数解析式(2)分别将m,n代入函数解析式,求出对应的横纵坐标即可求解(3)观察图像即可,答案不唯一(4)观察图像选择曲线在上方的区域即可.【详解】解(1)将(0,2),(1,1)代入解析式得解得:∴函数的解析式为y=(2)①令x=-1,则y=1,∴m=1令y=,则x=±3,∵2<n<4,∴n=3②(3)函数存在最大值,当x=0是,y取得最大值2.(4)直接观察图象可知,当|x﹣|≤时,-1≤x≤2【点睛】本题考查了用待定系数法求函数的解析式,函数的图象和性质,根据函数图象求解不等式等问题,综合性强,熟悉函数的图象和性质是解题关键.二、中考几何压轴题11.(1),;(2)结论仍然成立,证明详见解析;(3)的长为或.【分析】(1)延长DE交CF的延长线于点N,由正方形的性质可得和均为等腰直角三角形,因此,易证,由相似三角形的性质即可得到,由三角形的解析:(1),;(2)结论仍然成立,证明详见解析;(3)的长为或.【分析】(1)延长DE交CF的延长线于点N,由正方形的性质可得和均为等腰直角三角形,因此,易证,由相似三角形的性质即可得到,由三角形的内角和即可得到;(2)延长交于点,由旋转的性质可知和均为等腰直角三角形,因此,易证,同(1)易证结论仍成立;(3)由点E到直线AD的距离为2,,可知点F在直线AD或AB上,分两种情况讨论:(i)当点F在DA的延长线或BA延长线上时,由勾股定理可得的长,(ii)当点F在AD或AB上时,过点E作的高,由勾股定理可得的长.【详解】解:(1)如图①,延长DE交CF的延长线于点N,∵AC是正方形ABCD的对角线,∴,∵是直角三角形,∴和均为等腰直角三角形,∴,又∵,∴,∴,,∴;又∵,,,∴故答案为:,(2)结论仍然成立.理由如下:如图②,延长交于点.∵是正方形的对角线,且是由原题中图1的位置旋转得来,∴,即和均为等腰直角三角形.∴.又∵,,∴.∴.∴,.∴.又∵,,,∴.∴结论成立.(3)的长为或.理由如下:∵点E到直线AD的距离为2,,∴点F在直线AD或AB上分两种情况讨论:(i)如图③,当点F在DA的延长线上时,过点E作EG⊥AD交延长线于点G,∵,∴,∴,在中,由勾股定理得;如图④,当点F在BA延长线上时,过点E作EK⊥AD交DA的延长线于点K,在等腰中,过点E作EH⊥AF于点H,∵AH=EK=2=AF,∴BF=AB+AF=12,∴;(ii)如图⑤,当点F在AD上时,过点E作EI⊥AD于点I,∵AF=4,AD=8,∴,在中,由勾股定理得;如图⑥,当点F在AB上时,过点E作EM⊥AD交AD于点M,在等腰中,过点E作EN⊥AF于点N,∵AN=EM=2=AF,∴,∴,综上所述,CF的长为或.【点睛】本题考查相似三角形和图形旋转的性质,属于综合题,需要分类讨论,熟练掌握等腰直角三角形的性质、相似三角形的性质、勾股定理等知识是解题关键.12.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得解析:(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得出,最后用互余即可得出位置关系;(2)先判断出,得出,同(1)的方法得出,,即可得出,同(1)的方法由,即可得出结论;(3)方法1:先判断出最大时,的面积最大,进而求出,,即可得出最大,最后用面积公式即可得出结论.方法2:先判断出最大时,的面积最大,而最大是,即可得出结论.【详解】解:(1)点,是,的中点,,,点,是,的中点,,,,,,,,,,,,,,,故答案为:,;(2)是等腰直角三角形.由旋转知,,,,,,,利用三角形的中位线得,,,,是等腰三角形,同(1)的方法得,,,同(1)的方法得,,,,,,,,是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,是等腰直角三角形,最大时,的面积最大,且在顶点上面,最大,连接,,在中,,,,在中,,,,.方法2:由(2)知,是等腰直角三角形,,最大时,面积最大,点在的延长线上,,,.【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出,,解(2)的关键是判断出,解(3)的关键是判断出最大时,的面积最大.13.【问题发现】;【类比探究】上述结论还成立,理由见解析;【拓展延伸】或.【分析】问题发现:证出AB∥EF,由平行线分线段成比例定理得出,即可得出结论;类比探究:证明△ACE∽△BCF,得出,即解析:【问题发现】;【类比探究】上述结论还成立,理由见解析;【拓展延伸】或.【分析】问题发现:证出AB∥EF,由平行线分线段成比例定理得出,即可得出结论;类比探究:证明△ACE∽△BCF,得出,即可的结论;拓展延伸:分两种情况,连接CE交GF于H,由正方形的性质得出AB=BC=4,AC=AB=4,GF=CE=CF,GH=HF=HE=HC,得出CF=BC=2,GF=CE=2,HF=HE=HC=,由勾股定理求出AH==,即可得出答案.【详解】问题发现:AE=BF,理由如下:∵四边形和四边形是正方形,∴,,CE=CF,,∴,∴,∴AE=BF;故答案为:AE=BF;类比探究:上述结论还成立,理由如下:连接,如图2所示:∵,∴,在和中,CE=CF,CA=CB,∴,∴,∴,∴AE=BF;拓展延伸:分两种情况:①如图3所示:连接交于,∵四边形和四边形是正方形,∴,AC=AB=4,GF=CE=CF,,∵点为的中点,∴,GF=CE=2,GH=HF=HE=HC=,∴∴AG=AH+HG=;②如图4所示:连接交于,同①得:GH=HF=HE=HC=,∴,∴AG=AH-HG=;故答案为:或.【点睛】本题是四边形综合题目,考查了正方形的性质、旋转的性质、平行线分线段成比例定理、相似三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.14.(1)见解析;(2)2:1;(3)点Q是AB边的四等分点,点E是AD边的五等分点,理由见解析【分析】(1)如图1,连接PC,根据正方形的性质、HL定理证明△CD′P≌△CBP,根据全等三角形的性解析:(1)见解析;(2)2:1;(3)点Q是AB边的四等分点,点E是AD边的五等分点,理由见解析【分析】(1)如图1,连接PC,根据正方形的性质、HL定理证明△CD′P≌△CBP,根据全等三角形的性质得出结论;(2)设BP=x,根据翻转变换的性质、勾股定理列出方程,解方程即可;(3)如图2,连接QM,证明Rt△AQM≌Rt△D′QM(HL),得到AQ=D′Q,设正方形ABCD的边长为1,AQ=QD′=y,根据勾股定理列出方程,解方程即可.【详解】(1)证明:如图1,连接PC.∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∴∠MD′C=∠D=90°,∴∠CD′P=∠B=90°,在Rt△CD′P和Rt△CBP中,,∴Rt△CD′P≌Rt△CBP(HL),∴BP=D′P;(2)解:设正方形纸片ABCD的边长为1.则AM=DM=D′M=.设BP=x,则MP=MD′+D′P=DM+BP=+x,AP=1﹣x,在Rt△AMP中,根据勾股定理得AM2+AP2=MP2.∴()2+(1﹣x)2=(+x)2,解得x=,∴BP=,AP=,∴AP:BP=2:1,故答案为:2:1.(3)解:点Q是AB边的四等分点,点E是AD边的五等分点.理由:如图2,连接QM.∴∠QD′M=180°﹣∠MD′C=90°,∴∠QD′M=∠A=90°.在Rt△AQM和Rt△D′QM中,,∴Rt△AQM≌Rt△D′QM(HL),∴AQ=D′Q,设正方形ABCD的边长为1,AQ=QD′=y,则QP=AP﹣AQ=﹣y.在Rt△QPD′中,根据勾股定理得QD′2+D′P2=QP2.∵D′P=BP=,∴y2+()2=(﹣y)2,解得y=.∴AQ:AB=1:4,即点Q是AB边的四等分点,∵EF∥AB,∴,即,解得AE=.∴点E为AD的五等分点.【点睛】本题是四边形综合题,考查了正方形的性质,折叠的性质,翻转变换的性质全等三角形的判定和性质,勾股定理等知识,熟练掌握折叠的性质及方程思想是解题的关键.15.(1)60;(2)见解析;(3)见解析【分析】(1)根据等边三角形的性质可得AB=AC,AM=AN,∠BAC=∠MAN=60°,进而得到∠BAM=∠CAN,再利用SAS可证明≌,继而得出结论;解析:(1)60;(2)见解析;(3)见解析【分析】(1)根据等边三角形的性质可得AB=AC,AM=AN,∠BAC=∠MAN=60°,进而得到∠BAM=∠CAN,再利用SAS可证明≌,继而得出结论;(2)也可以通过证明≌,得出结论,和(1)的思路完全一样;(3)当∠ABC=∠AMN时,∽,利用相似的性质得到,又根据∠BAM=∠CAN,证得∽,即可得到答案.【详解】(1)证明:∵、是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,

∴∠BAM=∠CAN,

∵在和中,,∴≌(SAS),∴∠ABC=∠ACN;∵是等边三角形∴∠ABC=60°∴∠ACN=∠ABC=60°.(2)结论∠ACN=60°仍成立.理由如下:∵、都是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∴≌,∴∠ACN=∠ABM=60°.(3)添加条件:∠ABC=∠AMN.理由如下:∵BA=BC,MA=MN,∠ABC=∠AMN,∴∠BAC=∠MAN,∴∽,∴.又∠BAM=∠BAC-∠MAC,∠CAN=∠MAN-∠MAC,∴∠BAM=∠CAN,∴∽,∴∠ABC=∠ACN.【点睛】本题主要考查了等边三角形的性质,以及全等三角形的判定与性质,解答本题的关键是仔细观察图形,找到全等的条件,利用全等的性质证明结论.16.(1);(2),见解析;(3)【分析】(1)根据SAS可证△ABE≌△ACD,进而可得BE=CD,结合BD+CD=BC可得BD+BE=BC,再根据等腰直角三角形中BC=即可证得;(2)过点A解析:(1);(2),见解析;(3)【分析】(1)根据SAS可证△ABE≌△ACD,进而可得BE=CD,结合BD+CD=BC可得BD+BE=BC,再根据等腰直角三角形中BC=即可证得;(2)过点A作AH⊥BC,根据∠BAC=120°,AB=AC可得∠ABC=30°,,则,由(1)可知BD+BE=BC,由此即可得;(3)过Q点作QF∥AC交BC延长线于点F,先证∠BQF=120°,BQ=QF,进而可由(2)同理可知,△QBE≌△QFD,,进而可证得,再根据cos∠EBD==cos60°=可求得,进而求得,最后根据AQ=BQ-AB即可得到答案.【详解】解:(1)理由如下:∵∠EAD=∠BAC=90°∴∠EAB=∠DAC在△ABE与△ACD中,∴△ABE≌△ACD(SAS)∴BE=CD,∵BD+CD=BC∴BD+BE=BC∵在Rt△ABC中,∠BAC=90°,AB=AC,∴BC=∴BD+BE=;(2)结论:,理由如下:过点A作AH⊥BC,∵∠BAC=120°,AB=AC∴∠ABC=30°,在Rt△ABH中,cos∠ABH==cos30°=∴BH=AB,∴由(1)同理可知BD+BE=BC,∴;(3)过Q点作QF∥AC交BC延长线于点F,∴∴∠QFC=∠QBF=30°,∠BQF=120°∴BQ=QF由(2)同理可知,△QBE≌△QFD,∴cos∠EBD==cos60°=∵,∴AQ=BQ-AB=.【点睛】本题考查了全等三角形的判定及性质,等腰直角三角形的性质,解直角三角形的应用,熟练掌握相关图形的判定及性质以及能够作出正确的辅助线是解决本题的关键.17.(1)等边三角形;(2)的形状不变,理由见解析;(3)或.【分析】(1)先根据矩形的性质、解直角三角形可得,再根据直角三角形斜边上的中线可得,然后根据等腰三角形的性质、三角形的外角性质可得,最后解析:(1)等边三角形;(2)的形状不变,理由见解析;(3)或.【分析】(1)先根据矩形的性质、解直角三角形可得,再根据直角三角形斜边上的中线可得,然后根据等腰三角形的性质、三角形的外角性质可得,最后根据等边三角形的判定即可得出结论;(2)如图(见解析),先根据线段垂直平分线的判定与性质、三角形全等的判定定理证出,再根据三角形全等的性质可得,从而可得,然后根据三角形中位线定理可得,,从而可得,最后根据等边三角形的判定即可得出答案;(3)分点在线段上和点在线段上两种情况,再利用直角三角形的性质、勾股定理分别求出的长,然后根据线段中点的定义、线段的和差即可得.【详解】解:(1)在矩形中,,,在中,,,点为的中点,,,同理可得:,,,,,是等边三角形,故答案为:等边三角形;(2)的形状不变,理由如下:如图,延长到,使;延长到,使,连接,其中相交于点,相交于点,相交于点,由旋转的性质得:,,垂直平分,,同理可得:,,即,在和中,,,,,,点为的中点,是的中位线,,同理可得:,,是等边三角形;(3)由题意,分以下两种情况:①如图,当点在线段上时,,,,在中,,,在中,,,,;②如图,当点在线段上时,同理可得:,,,,综上,的长为或.【点睛】本题考查了矩形的性质、解直角三角形、三角形全等的判定定理与性质、三角形中位线定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.18.(1)6;(2);(3)四边形不是平行四边形,理由见解析.【分析】(1)先根据已知条件和矩形的性质可得CD=AB=10,AD=BC=8,再根据折叠的性质可得DC'=DC=10,最后运用勾股定理解解析:(1)6;(2);(3)四边形不是平行四边形,理由见解析.【分析】(1)先根据已知条件和矩形的性质可得CD=AB=10,AD=BC=8,再根据折叠的性质可得DC'=DC=10,最后运用勾股定理解答即可;(2)先根据折叠的性质和勾股定理可求得,进而求得BE、EC,然后连接,根据平移的性质可得,进而说明,最后运用相似三角形的性质解答即可;(3)先由折叠可得,再根据平移的性质和等腰三角形的判定与性质得到,过点作于点H,则且,根据相似三角形的性质可得;设,则,在中,运用勾股定理求得和DH;然后再在中求得,可以发现即,即可发现四边形不可能是平行四边形.【详解】解:(1)如图:∵矩形中,∴CD=AB=10,AD=BC=8根据折叠的性质可得DC'=DC=10在直角三角形ADC'中,AC'=.(2)由折叠可知:.在中,根据勾股定理可求得,∴.在中,设,根据勾股定理,得,解得,即.如图:连接,则由平移可知,,且.于是可得,∴,又∵,∴.(3)四边形不是平行四边形,理由如下:由折叠可知;又∵平移可知,且,∴,∴,即是等腰三角形,∴.如图,过点作于点H,则且,∴.设,则,在中,根据勾股定理,得,解得,∴,∴.而在中,,根据勾股定理可求得,∴,即,故四边形不可能是平行四边形.【点睛】本题主要考查了矩形的性质、勾股定理以及相似三角形的判定与性质,灵活运用相似三角形的判定与性质成为解答本题的关键.19.(1);;(2)矩形,见解析;(3)见解析,.【分析】(1)如图,连接OA、OA′、OD、OD′,根据旋转的性质可得OA=OA′、OD=OD′,∠AOA′=∠DOD′=,根据勾股定理可得OA=O解析:(1);;(2)矩形,见解析;(3)见解析,.【分析】(1)如图,连接OA、OA′、OD、OD′,根据旋转的性质可得OA=OA′、OD=OD′,∠AOA′=∠DOD′=,根据勾股

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论