难点详解吉林省集安市中考数学真题分类(勾股定理)汇编同步练习试题(含详细解析)_第1页
难点详解吉林省集安市中考数学真题分类(勾股定理)汇编同步练习试题(含详细解析)_第2页
难点详解吉林省集安市中考数学真题分类(勾股定理)汇编同步练习试题(含详细解析)_第3页
难点详解吉林省集安市中考数学真题分类(勾股定理)汇编同步练习试题(含详细解析)_第4页
难点详解吉林省集安市中考数学真题分类(勾股定理)汇编同步练习试题(含详细解析)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省集安市中考数学真题分类(勾股定理)汇编同步练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.802、下列四组数中,是勾股数的是()A.5,12,13 B.4,5,6 C.2,3,4 D.1,,3、如图,在Rt△ACB和Rt△DCE中,AC=BC=2,CD=CE,∠CBD=15°,连接AE,BD交于点F,则BF的长为(

)A. B. C. D.4、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是(

)A.1 B.2020 C.2021 D.20225、如图,长方形中,,,将此长方形折叠,使点与点重合,折痕为,则的长为(

)A.12 B.8 C.10 D.136、勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是(

)A. B. C. D.7、如图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形的两直角边分别是a、b,且,大正方形的面积是9,则小正方形的面积是(

)A.3 B.4 C.5 D.6第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为_______2、设,是直角三角形的两条直角边长,若该三角形的周长为24,斜边长为10,则的值为________.3、如图,在网格中,每个小正方形的边长均为1.点A、B,C都在格点上,若BD是△ABC的高,则BD的长为__________.4、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了__米.5、如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.6、如图,点在正方形的边上,若,,那么正方形的面积为_.7、如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D′重合.若BC=8,CD=6,则CF的长为_________________.8、如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了________步路(假设步为米),却踩伤了花草.三、解答题(7小题,每小题10分,共计70分)1、如图所示的一块地,已知,,,,,求这块地的面积.2、阅读下面材料:小明遇到这样一个问题:∠MBN=30°,点A为射线BM上一点,且AB=4,点C为射线BN上动点,连接AC,以AC为边在AC右侧作等边三角形ACD,连接BD.当AC⊥BN时,求BD的长.小明发现:以AB为边在左侧作等边三角形ABE,连接CE,能得到一对全等的三角形,再利用∠EBC=90°,从而将问题解决(如图1).请回答:(1)在图1中,小明得到的全等三角形是△≌△;BD的长为.(2)动点C在射线BN上运动,当运动到AC时,求BD的长;(3)动点C在射线BN上运动,求△ABD周长最小值.3、如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE;(2)连结AE,当BC=5,AC=12时,求AE的长.4、如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的长.5、如图,有一架秋千,当他静止时,踏板离地的垂直高度,将他往前推送(水平距离)时,秋千的踏板离地的垂直高度,秋千的绳索始终拉得很直,求绳索的长度.6、细心观察图形,认真分析各式,然后解答问题.OA22=,;OA32=12+,;OA42=12+,…(1)请用含有n(n是正整数)的等式表示上述变规律:OAn2=______;Sn=______.(2)求出OA10的长.(3)若一个三角形的面积是,计算说明他是第几个三角形?(4)求出S12+S22+S32+…+S102的值.7、如图,在四边形中,,,于,(1)求证:;(2)若,,求四边形的面积.-参考答案-一、单选题1、C【解析】【详解】解:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S阴影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故选:C.2、A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A、52+122=132,都是正整数,是勾股数,故此选项符合题意;B、42+52≠62,不是勾股数,故此选项不合题意;C、22+32≠42,不是勾股数,故此选项不合题意;D、,不是正整数,不是勾股数,故此选项不合题意;故选:A.【考点】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.3、B【解析】【分析】由已知证得,进而确定三个内角的大小,求得,进而可得到答案.【详解】解:∵∴∴又∵∴∴∵在等腰直角三角形中∴∴∴∵∴故选:B.【考点】本题考查全等三角形的判定和性质,勾股定理;熟练掌握相关知识是解题的关键.4、D【解析】【分析】根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.【详解】解:如图,由题意得:SA=1,由勾股定理得:SB+SC=1,则“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得:“生长”了2次后形成的图形中所有的正方形面积和为3,“生长”了3次后形成的图形中所有正方形的面积和为4,……“生长”了2021次后形成的图形中所有的正方形的面积和是2022,故选:D【考点】本题考查了勾股数规律问题,找到规律是解题的关键.5、D【解析】【分析】设BE为x,则AE为25-x,在由勾股定理有,即可求得BE=13.【详解】设BE为x,则DE为x,AE为25-x∵四边形为长方形∴∠EAB=90°∴在中由勾股定理有即化简得解得故选:D.【考点】本题考查了折叠问题求折痕或其他边长,主要可根据折叠前后两图形的全等条件,把某个直角三角形的三边都用同一未知量表示出来,并根据勾股定理建立方程,进而可以求解.6、B【解析】【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【考点】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.7、A【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积−4个直角三角形的面积,利用已知(a+b)2=15,大正方形的面积为9,可以得出直角三角形的面积,进而求出答案.【详解】解:∵(a+b)2=15,∴a2+2ab+b2=15,∵大正方形的面积为:a2+b2=9,∴2ab=15−9=6,即ab=3,∴直角三角形的面积为:,∴小正方形的面积为:,故选:A.【考点】此题主要考查了完全平方公式及勾股定理的应用,熟练应用完全平方公式及勾股定理是解题关键.二、填空题1、13【解析】【分析】先根据△BCE等腰直角三角形得出BC的长,进而可得出BD的长,根据△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的长.【详解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案为13.【考点】本题考查了等腰直角三角形的性质及勾股定理,熟知等腰三角形两腰相等的性质是解答此题的关键.2、48【解析】【分析】由该三角形的周长为24,斜边长为10可知a+b+10=24,再根据勾股定理和完全平方公式即可求出ab的值.【详解】解:∵三角形的周长为24,斜边长为10,∴a+b+10=24,∴a+b=14,∵a、b是直角三角形的两条直角边,∴a2+b2=102,则a2+b2=(a+b)2−2ab=102,即142−2ab=102,∴ab=48.故答案为:48.【考点】本题主要考查了勾股定理,掌握利用勾股定理证明线段的平方关系及完全平方公式的变形求值是解题的关键.3、##【解析】【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.【详解】】解:由勾股定理得:AC=,∵S△ABC=3×4-×1×2-×3×2-×2×4=4,∴AC•BD=4,∴×2BD=4,∴BD=,故答案为:.【考点】本题考查了勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.4、9.【解析】【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米,故答案为:9.【考点】本题考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.5、0.8【解析】【分析】梯子的长是不变的,只要利用勾股定理解出梯子滑动前和滑动后的所构成的两直角三角形,分别得出AO,A1O的长即可.【详解】解:在Rt△ABO中,根据勾股定理知,A1O==4(m),在Rt△ABO中,由题意可得:BO=1.4(m),根据勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案为0.8.【考点】本题考查勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.6、.【解析】【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【详解】解:由勾股定理得,,正方形的面积,故答案为.【考点】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.7、【解析】【分析】设,在中利用勾股定理求出x即可解决问题.【详解】解:∵是的中点,,,∴,由折叠的性质知:,设,则,在中,根据勾股定理得:,即:,解得,∴.故答案为:【考点】本题考查翻折变换、勾股定理,解题的关键是利用翻折不变性解决问题,学会转化的思想,利用方程的去思考问题,属于中考常考题型.8、【解析】【分析】少走的距离是AC+BC-AB,在直角△ABC中根据勾股定理求得AB的长即可.【详解】解:如图,∵在中,,∴米,则少走的距离为:米,∵步为米,∴少走了步.故答案为:.【考点】本题考查正确运用勾股定理.善于观察题目的信息,掌握勾股定理是解题的关键.三、解答题1、【解析】【分析】根据勾股定理求得的长,再根据勾股定理的逆定理判定为直角三角形,从而不难求得这块地的面积.【详解】解:连接.,,为直角三角形,,这块地的面积.【考点】本题考查了学生对勾股定理及其逆定理的理解及运用能力,解题的关键是掌握勾股定理的知识.2、(1)ABD,ACE,;(2)BD的长为;(3)+4.【解析】【分析】(1)根据SAS可证△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的长度;(2)作AH⊥BC于点H,以AB为边在左侧作等边△ABE,连接CE,求出BH,HC即BC的长度,再利用勾股定理即可求出CE的长度,由(1)知BD=CE,据此得解;(3)作AH⊥BC于点H,以AB为边在左侧作等边△ABE,延长EB至F,使BF=EB,连接AF交BN于C',连接EC',此时BD+AC'有最小值即为AF,此时△ABD周长=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等边三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案为:ABD,ACE,;(2)解:如下图,作AH⊥BC于点H,以AB为边在左侧作等边△ABE,连接CE,∵AB=4,∠MAN=30°,∴AH=2,BH=,∵AC=,∴HC=,∴BC=BH+HC=+=,∴CE=,由(1)可知BD=CE,∴此时BD的长为;(3)解:如图,以AB为边在左侧作等边△ABE,延长EB至F,使BF=EB,连接AF交BN于C',连接EC',∵EC'=FC'=BD,∴此时BD+AC'有最小值即为AF,∴此时△ABD周长=AD+BD+AB=AF+AB最小,作AG⊥BE于G,∴AG∥BN,∴∠BAG=30°,∴BG=AB=2,AG=,∴GF=BG+BF=2+4=6,由勾股定理得AF=,∴此时△ABD周长为:+4.【考点】本题主要考查全等三角形的判定和性质,勾股定理等,作出合适的辅助线,构造出全等三角形是解题的关键.3、(1)见解析;(2)13【解析】【分析】根据题意可知,本题考查平行的性质,全等三角形的判定和勾股定理,根据判定定理,运用两直线平行内错角相等再通过AAS以及勾股定理进行求解.【详解】解:(1)∵∴在△ABC和△DCE中∴△ABC≌△DCE(2)由(1)可得BC=CE=5在直角三角形ACE中【考点】本题考查平行的性质,全等三角形的判定和勾股定理,熟练掌握判定定理运用以及平行的性质是解决此类问题的关键.4、AB=2-2,CD=4-.【解析】【分析】此题为几何题,看题目只是一个四边形,要求两条未知边,那肯定要添辅助线.过点D作DH⊥BA延长线于H,作DM⊥BC于M.构建矩形HBMD.利用矩形的性质和解直角三角形来求AB、CD的长度.【详解】如图,过点D作DH⊥BA延长线于H,作DM⊥BC于点M.∵∠B=90°,∴四边形HBMD是矩形.∴HD=BM,BH=MD,∠ABM=∠ADC=90°,又∵∠C=60°,∴∠ADH=∠MDC=30°,∴在Rt△AHD中,AD=1,∠ADH=30°,则AH=AD=,DH=.∴MC=BC-BM=BC-DH=2-=.∴在Rt△CMD中,CD=2MC=4-,DM=CD=.∴AB=BH-AH=DM-AH=-=【考点】本题考查了勾股定理和矩形的判定与性质.此题的关键是根据题意作出辅助线,构建矩形.5、【解析】【分析】设秋千的绳索长为,则,,利用勾股定理得,再解方程即可得出答案.【详解】解:设秋千的绳索长为,则,,在中,,即,解得,答:绳索的长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论