2023年度吉林省榆树市中考数学通关题库及完整答案详解(必刷)_第1页
2023年度吉林省榆树市中考数学通关题库及完整答案详解(必刷)_第2页
2023年度吉林省榆树市中考数学通关题库及完整答案详解(必刷)_第3页
2023年度吉林省榆树市中考数学通关题库及完整答案详解(必刷)_第4页
2023年度吉林省榆树市中考数学通关题库及完整答案详解(必刷)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省榆树市中考数学通关题库考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、二次函数的图象如图所示,对称轴是直线.下列结论:①;②;③;④(为实数).其中结论正确的个数为(

)A.1个 B.2个 C.3个 D.4个2、点A(x,y)在第二象限内,且│x│=2,│y│=3,则点A关于原点对称的点的坐标为(

)A.(-2,3) B.(2,-3) C.(-3,2) D.(3,-2)3、对于抛物线,下列说法正确的是()A.抛物线开口向上B.当时,y随x增大而减小C.函数最小值为﹣2D.顶点坐标为(1,﹣2)4、有6张扑克牌(如图),背面朝上,从中任抽一张,则抽到方块牌的概率是()A. B. C. D.5、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接.下列结论一定正确的是(

)A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、如图,是的直径,,是上的点,且,分别与,相交于点,,则下列结论一定成立的是(

)A. B. C.平分D. E.2、下列图形中,是中心对称图形的是(

)A. B.C. D.3、二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论中正确的有()A.4a+b=0B.9a+c>﹣3bC.7a﹣3b+2c>0D.若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2E.若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x24、下列方程中,关于x的一元二次方程有(

)A.x2=0 B.ax2+bx+c=0 C.x2-3=x D.a2+a-x=0E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-95、下列命题正确的是(

)A.菱形既是中心对称图形又是轴对称图形B.的算术平方根是5C.如果一个多边形的各个内角都等于108°,则这个多边形是正五边形D.如果方程有实数根,则实数第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,是等边三角形,点D为BC边上一点,,以点D为顶点作正方形DEFG,且,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为________.2、如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____3、抛物线的开口方向向______.4、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_____.(只填序号)5、如果关于的一元二次方程有实数根,那么的取值范围是___.四、解答题(6小题,每小题10分,共计60分)1、如图,两个圆都以点O为圆心,大圆的弦交小圆于两点.求证:.2、解方程:(1)x2-x-2=0;(2)3x(x-2)=2-x.3、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为.求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由.4、在平面直角坐标系中,设二次函数(m是实数).(1)当时,若点在该函数图象上,求n的值.(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?(3)已知点,都在该二次函数图象上,求证:.5、每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)的函数关系式为:直接写出与的函数关系式,并注明自变量的取值范围;设日销售额为(元),求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销售额是多少元;由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态6、如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OB,求∠A的度数.-参考答案-一、单选题1、C【解析】【分析】①由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项①错误;②把代入中得,所以②正确;③由时对应的函数值,可得出,得到,由,,,得到,选项③正确;④由对称轴为直线,即时,有最小值,可得结论,即可得到④正确.【详解】解:①∵抛物线开口向上,∴,∵抛物线的对称轴在轴右侧,∴,∵抛物线与轴交于负半轴,∴,∴,①错误;②当时,,∴,∵,∴,把代入中得,所以②正确;③当时,,∴,∴,∵,,,∴,即,所以③正确;④∵抛物线的对称轴为直线,∴时,函数的最小值为,∴,即,所以④正确.故选C.【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右.常数项决定抛物线与轴交点:抛物线与轴交于.抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点.2、B【解析】【分析】根据A(x,y)在第二象限内可以判断x,y的符号,再根据|x|=2,|y|=3就可以确定点A的坐标,进而确定点A关于原点的对称点的坐标.【详解】∵A(x,y)在第二象限内,∴x<0y>0,又∵|x|=2,|y|=3,∴x=-2,y=3,∴点A关于原点的对称点的坐标是(2,-3).故选:B.【考点】本题考查了关于原点对称的点的坐标,由点所在的象限能判断出坐标的符号,同时考查了关于原点对称的点坐标之间的关系,难度一般.3、B【解析】【分析】根据二次函数图象的性质对各项进行分析判断即可.【详解】解:抛物线解析式可知,A、由于,故抛物线开口方向向下,选项不符合题意;B、抛物线对称轴为,结合其开口方向向下,可知当时,y随x增大而减小,选项说法正确,符合题意;C、由于抛物线开口方向向下,故函数有最大值,且最大值为-2,选项不符合题意;D、抛物线顶点坐标为(-1,-2),选项不符合题意.故选:B.【考点】本题主要考查了二次函数的性质,解题关键是熟练运用抛物线的开口方向、对称轴、顶点坐标以及二次函数图象的增减性解题.4、A【解析】【分析】m表示事件A发生可能出现的次数,n表示一次试验所有等可能出现的次数;代入公式即可求得概率.【详解】解:观察图形知:6张扑克中有2张方块,所以从中任抽一张,则抽到方块的概率故选A.【考点】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.5、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB判断选项B不一定正确即可.【详解】解:∵绕点顺时针旋转得到,∴AC=CD,BC=EC,∠ACD=∠BCE,∴∠A=∠CDA=;∠EBC=∠BEC=,∴选项A、C不一定正确,∴∠A=∠EBC,∴选项D正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB不一定等于,∴选项B不一定正确;故选D.【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.二、多选题1、ACDE【解析】【分析】根据直径的性质,垂径定理等知识一一判断即可;【详解】∵AB是直径,∴∠ADB=90°,∴AD⊥BD,故A正确;∵C,D是⊙O上的点,∴与不一定相等,∴∠A与∠CBA不一定相等,∵OB=OC,∴∠C=∠CBA,∴∠A与∠C不一定相等,∵∠AOC=∠C+∠CBA∠AEC=∠A+∠CBA∴∠AOC与∠AEC不一定相等,故B选项错误;∵OC∥BD,BD⊥AD,∴OC⊥AD,∴,AF=DF,故D正确∴∠ABC=∠CBD,即CB平分∠ABD,故C正确,∵AF=DF,AO=OB,∴BD=2OF,故E正确,故选:ACDE.【考点】本题考查直径的性质、垂径定理、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、BD【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,进而判断得出答案.【详解】解:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项不符合题意;B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项符合题意;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项不合题意;D.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项符合题意.故选:BD.【考点】本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3、ABE【解析】【分析】根据抛物线的对称轴为直线x=2,则有4a+b=0,可得A正确;根据二次函数的对称性得到当x=3时,函数值大于0,则9a+3b+c>0,即9a+c>﹣3b,可得B正确;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以7a-3b+2c=9a,再根据抛物线开口向下得a<0,于是有7a﹣3b+2c<0,可得C错误;利用抛物线的对称性得到(﹣3,)在抛物线上,然后利用二次函数的增减性可得D错误;作出直线y=﹣3,然后依据函数图象进行判断可得E正确;综上即可得答案.【详解】A项:∵x==2,∴4a+b=0,故A正确.B项:∵抛物线与x轴的一个交点为(-1,0),对称轴为直线x=2,∴另一个交点为(5,0),∵抛物线开口向下,∴当x=3时,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故B正确.C项:∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣10a=9a,∵抛物线开口向下,∴a<0,∴7a﹣3b+2c<0,故C错误;D项:∵抛物线的对称轴为x=2,C(7,)在抛物线上,∴点(﹣3,)与C(7,)关于对称轴x=2对称,∵A(﹣3,)在抛物线上,∴=,∵﹣3<﹣12,在对称轴的左侧,抛物线开口向下,∴y随x的增大而增大,∴=<,故D错误.E项:方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5,过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根,∵<,抛物线与x轴交点为(-1,0),(5,0),∴依据函数图象可知:<﹣1<5<,故E正确.故答案为:ABE【考点】本题考查了二次函数图象与系数的关系:二次函数y=ax²+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b²﹣4ac>0时,抛物线与x轴有2个交点;△=b²﹣4ac=0时,抛物线与x轴有1个交点;△=b²﹣4ac<0时,抛物线与x轴没有交点.4、AC【解析】【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A.x2=0,C.x2-3=x符合一元二次方程的定义;B.ax2+bx+c=0中,当a=0时,不是一元二次方程;D.a2+a-x=0是关于x的一元一次方程;E.(m-1)x2+4x+=0,当m=1时为关于x的一元一次方程;F.+=分母中含有字母,是分式方程;G.=2是无理方程;H.(x+1)2=x2-9展开后为x2+2x+1=x2-9,即2x+1=-9是一元一次方程.故选AC.【考点】本题考查了一元二次方程的定义,一元二次方程具有以下三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.5、AD【解析】【分析】利用菱形的对称性、算术平方根的定义、多边形的内角和、一元二次方程根的判别式等知识分别判断后即可确定正确的选项.【详解】解:A、菱形既是中心对称图形又是轴对称图形,故命题正确,符合题意;B、的算术平方根是,故命题错误,不符合题意;C、若一个多边形的各内角都等于108°,各边也相等,则它是正五边形,故命题错误,不符合题意;D、对于方程,当a=0时,方程,变为2x+1=0,有实数根,当a≠0时,时,即,方程有实数根,综上所述,方程有实数根,则实数,故命题正确,符合题意.故选:AD.【考点】考查了命题与定理的知识,解题的关键是了解算术平方根的定义、菱形的对称性、多边形的内角和、一元二次方程根的判别式等知识,难度不大.三、填空题1、8【解析】【分析】过点A作于M,由已知得出,得出,由等边三角形的性质得出,,得出,在中,由勾股定理得出,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,,即此时AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出.【详解】过点A作于M,∵,∴,∴,∵是等边三角形,∴,∵,∴,∴,在中,,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,,即此时AE取最小值,在中,,∴在中,;故答案为8.【考点】本题考查了旋转的性质、正方形的性质、等边三角形的性质、勾股定理以及最小值问题;熟练掌握正方形的性质和等边三角形的性质是解题的关键.2、【解析】【分析】连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案为.【考点】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.3、下【解析】【分析】根据二次函数二次项系数的大小判断即可;【详解】∵,∴抛物线开口向下;故答案是下.【考点】本题主要考查了判断抛物线的开口方向,准确分析判断是解题的关键.4、②【解析】【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解.【详解】解:即,构造如图②中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.故答案为②.【考点】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.5、【解析】【分析】由一元二次方程根与系数的关键可得:从而列不等式可得答案.【详解】解:关于的一元二次方程有实数根,故答案为:【考点】本题考查的是一元二次方程根的判别式,掌握一元二次方程根的判别式是解题的关键.四、解答题1、见解析【解析】【分析】过点O作OP⊥AB,由等腰三角形的性质可知AP=BP,再由垂径定理可知CP=DP,故可得出结论.【详解】证明:如图所示,过点O作OP⊥AB,垂足为点P,由垂径定理可得PA=PB,PC=PD,PA-PC=PB-PD,AC=BD.【考点】本题考查的是垂径定理,根据题意作出辅助线,利用垂径定理求解是解答此题的关键.2、(1)x1=2,x2=-1(2)x1=-,x2=2【解析】【分析】(1)利用因式分解法解方程;(2)利用因式分解法解方程;(1)解:x2-x-2=0,(x-2)(x+1)=0,x-2=0或x+1=0,x1=2,x2=-1.(2)解:3x(x-2)=2-x,3x(x-2)+(x-2)=0,(3x+1)(x-2)=0,3x+1=0或x-2=0,x1=-,x2=2.【考点】本题考查了因式分解法解一元二次方程:将方程的右边化为零,把方程的左边分解为两个一次因式的积,令每个因式分别为零,解这两个一元一次方程,它们的解就是原方程的解.3、1

y=−x2+2x+3,y=−x+3;有最大值;存在满足条件的点,其坐标为或【解析】【分析】可设抛物线解析式为顶点式,由点坐标可求得抛物线的解析式,则可求得点坐标,利用待定系数法可求得直线解析式;设出点坐标,从而可表示出的长度,利用二次函数的性质可求得其最大值;过作轴,交于点,过和于,可设出点坐标,表示出的长度,由条件可证得为等腰直角三角形,则可得到关于点坐标的方程,可求得点坐标.【详解】解:抛物线的顶点的坐标为,可设抛物线解析式为,点在该抛物线的图象上,,解得,抛物线解析式为,即,点在轴上,令可得,点坐标为,可设直线解析式为,把点坐标代入可得,解得,直线解析式为;设点横坐标为,则,,,当时,有最大值;如图,过作轴交于点,交轴于点,作于,设,则,,是等腰直角三角形,,,当中边上的高为时,即,,,当时,,方程无实数根,当时,解得或,或,综上可知存在满足条件的点,其坐标为或.【考点】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在中主要是待定系数法的考查,注意抛物线顶点式的应用,在中用点坐标表示出的长是解题的关键,在中构造等腰直角三角形求得的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.4、(1)-7(2)对,理由见解析(3)见解析【解析】【分析】(1)把m=2,点A(8,n)代入解析式即可求解;(2)由抛物线解析式,得顶点是,把x=2m代入,求出y值与3-m比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P(a+1,c),Q(4m-5+a,c)的纵坐标相同,即可求得对称轴为直线x==a+2m-2,即可得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到==,根据二次函数的性质即可证得结论.(1)解:当m=2时,∵A(8,n)在函数图象上,∴(2)解:由题意得,顶点是当x=2m时,∴顶点在直线上(3)证明:∵P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上∴对称轴是直线∴a+2m-2=2m,∴a=2,∴P(3,c),把P(3,c)代入抛物线解析式,得∴==,∵-2<0,∴c有最大值为,∴c≤.【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键.5、(1)y=,(2)w=,在这15天中,第9天销售额达到最大,最大销售额是3600元,(3)第13天、第1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论