




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省乐昌市中考数学经典例题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、用配方法解方程时,原方程应变形为(
)A. B. C. D.2、一元二次方程配方后可化为(
)A. B.C. D.3、如果,那么的结果是(
)A. B. C. D.4、已知⊙O的半径为4,点O到直线m的距离为d,若直线m与⊙O公共点的个数为2个,则d可取()A.5 B.4.5 C.4 D.05、一元二次方程x2-3x+1=0的根的情况是(
).A.没有实数根 B.有两个相等的实数根C.只有一个实数根 D.有两个不相等的实数根二、多选题(5小题,每小题3分,共计15分)1、在图所示的4个图案中不包含图形的旋转的是(
)A. B. C. D.2、如图所示,二次函数的图象的一部分,图像与x轴交于点.下列结论中正确的是(
)A.抛物线与x轴的另一个交点坐标是B.C.若抛物线经过点,则关于x的一元二次方程的两根分别为,5D.将抛物线向左平移3个单位,则新抛物线的表达式为3、下列说法中,正确的有()A.等弧所对的圆心角相等B.经过三点可以作一个圆C.平分弦的直径垂直于这条弦D.圆的内接平行四边形是矩形4、下列命题中,不正确的是(
)A.三点可确定一个圆B.三角形的外心是三角形三边中线的交点C.一个三角形有且只有一个外接圆D.三角形的外心必在三角形的内部或外部5、下列方程中,有实数根的方程是()A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0C.3x2﹣2x﹣1=0 D.x2+2x+4=0第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,,,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则阴影部分的面积是________.2、如图,I是△ABC的内心,∠B=60°,则∠AIC=_____.3、已知二次函数y=x2+bx+c的顶点在x轴上,点A(m﹣1,n)和点B(m+3,n)均在二次函数图象上,求n的值为____.4、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_______(填序号).5、如图,在中,,,则图中阴影部分的面积是_________.(结果保留)四、解答题(6小题,每小题10分,共计60分)1、小明和小丽先后从A地出发同一直道去B地,设小丽出发第时,小丽、小明离B地的距离分别为、,与x之间的数表达式,与x之间的函数表达式是.(1)小丽出发时,小明离A地的距离为.(2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?2、为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润.3、如图,方格中,每个小正方形的边长都是单位1,△ABC的位置如图.(1)画出将△ABC向右平移2个单位得到的△A1B1C1;(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;(3)写出C2点的坐标.4、如图,AB是⊙O的直径,弦CD⊥AB于点E,点P⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若∠ABC=55°,求∠P的度数.5、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.6、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点.(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、.直线与直线交于点,当时,求值.-参考答案-一、单选题1、D【解析】【分析】移项,配方,变形后即可得出选项.【详解】解:x2-4x=1,x2-4x+4=1+4,∴(x-2)2=5,故选:D.【考点】本题考查了解一元二次方程,能够正确配方是解此题的关键.2、B【解析】【分析】根据题意直接对一元二次方程配方,然后把常数项移到等号右边即可.【详解】解:根据题意,把一元二次方程配方得:,即,∴化成的形式为.故选:B.【考点】本题考查配方法解一元二次方程,注意掌握配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3、B【解析】【分析】根据比例的性质即可得到结论.【详解】∵=,∴可设a=2k,b=3k,∴==-.故选B.【考点】本题主要考查了比例的性质,解本题的要点根据题意可设a,b的值,从而求出答案.4、D【解析】【分析】根据直线和圆的位置关系判断方法,可得结论.【详解】∵直线m与⊙O公共点的个数为2个∴直线与圆相交∴d<半径=4故选D.【考点】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r,③直线l和⊙O相离⇔d>r.5、D【解析】【分析】根据一元二次方程判别式的性质分析,即可得到答案.【详解】∵∴x2-3x+1=0有两个不相等的实数根故选:D.【考点】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程判别式的性质,从而完成求解.二、多选题1、AC【解析】【分析】根据中心对称与轴对称的概念,即可求解.【详解】解:A、是轴对称图形,故本选项符合题意;B、是中心对称图形,属于图形的旋转,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、既是轴对称图形,也是中心对称图形,包含图形的旋转,故本选项不符合题意;故选:AC.【考点】本题主要考查了中心对称与轴对称的概念,熟练掌握轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合是解题的关键.2、ABD【解析】【分析】结合图象,根据二次函数的性质进行判断即可求解【详解】∵抛物线开口向下,∴a<0,将(-1,0)代入抛物线方程,可得:4a+k=0,∵4a+k=0,∴k=-4a,∴k+a=-3a,∵a<0,∴k+a=-3a>0,即B选项正确;将k=-4a代入抛物线方程,可得:抛物线方程为:,当y=0时,方程的根为-1和3,∴抛物线与x轴的另一个交点为(3,0),即A项正确;将点(-3,m)代入到抛物线方程,可得m=12a,∵结合k=-4a,∴方程,化简为:,∵a<0,∴,即,显然方程无实数解,故C项说法错误;向左平移3个单位,依据左加右减原则,可得新抛物线为:,即D说法正确,故选:ABD.【考点】本题考查了抛物线的性质与图象的知识,解答本题时需注重运用数形结合的思想.3、AD【解析】【分析】根据圆的有关概念及性质,对选项逐个判断即可.【详解】解:A.等弧是能够完全重合的弧,因此等弧所对的圆心角相等,正确,符合题意;B.经过不在同一直线上的三点可以作一个圆,故原命题错误,不符合题意;C.平分弦(不是直径)的直径垂直于这条弦,故原命题错误,不符合题意;D.圆的内接平行四边形是矩形,正确,符合题意,正确的有A、D,故答案为:A、D.【考点】此题考查了圆的有关概念及性质,解题的关键是熟练掌握圆的相关概念以及性质.4、ABD【解析】【分析】根据圆的性质定理逐项排查即可.【详解】解:A.不在同一条直线上的三点确定一个圆,故本选项错误;B.三角形的外心是三角形三边垂直平分线的交点,所以本选项是错误;C.三角形的外接圆是三条垂直平分线的交点,有且只有一个交点,所以任意三角形一定有一个外接圆,并且只有一个外接圆,所以本选项是正确的;D.直角三角形的外心在斜边中点处,故本选项错误.故选:ABD.【考点】考查确定圆的条件以及三角形外接圆的知识,掌握三角形的外接圆是三条垂直平分线的交点是解题的关键.5、ABC【解析】【分析】根据直接开方法可确定A选项正确;根据因式分解法可确定B选项正确;根据方程的判别式,当时,方程有两个不等的实数根,当时,方程有两个相等的实数根,当时,方程无实数根,可判断C选项正确,D选项错误.【详解】A.,解得:,,方程有实数根,A选项正确;B.,解得:,,方程有实数根,B选项正确;C.,,,,方程有实数根,C选项正确;D.,,,,方程无实数根,D选项错误.故选:ABC.【考点】本题考查了一元二次方程根的判断,熟练掌握根的判别式是解题的关键.三、填空题1、【解析】【分析】连接CE,如图,利用平行线的性质得∠COE=∠EOB=90°,再利用勾股定理计算出OE=,利用余弦的定义得到∠OCE=60°,然后根据扇形面积公式,利用S阴影部分=S扇形BCE−S△OCE−S扇形BOD进行计算即可.【详解】解:连接CE,如图,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S阴影部分=S扇形BCE−S△OCE−S扇形BOD=,故答案为.【考点】本题考查了扇形面积的计算:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.2、120°.【解析】【分析】根据三角形的内切圆的圆心是三角形三个角的平分线的交点即可求解.【详解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的内切圆的圆心是三角形三个角的平分线的交点,∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案为120°.【考点】此题主要考查利用三角形的内切圆的圆心是三角形三个角的平分线的交点性质进行角度求解,熟练掌握,即可解题.3、4【解析】【分析】由A、B坐标可得对称轴,由顶点在x轴上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐标代入即可求得n的值.【详解】解:∵点A(m﹣1,n)和点B(m+3,n)均在二次函数y=x2+bx+c图象上,∴,∴b=﹣2(m+1),∵二次函数y=x2+bx+c的顶点在x轴上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐标代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案为:4.【考点】本题考查了二次函数的性质,二次函数的顶点坐标,表示出b、c的值是解题的关键.4、①②④【解析】【分析】由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断①;由抛物线的对称轴为直线x=1,即可判断②;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断④,由抛物线开口向下,得到a<0,再由当x=-1时,,即可判断③.【详解】解:∵二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),∴c=3,故①正确;∵抛物线的对称轴为直线x=1,∴,即,故②正确;∵抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,∴抛物线与x轴的另一个交点在2到3之间,故④正确;∵抛物线开口向下,∴a<0,∵当x=-1时,,∴即,故③错误,故答案为:①②④.【考点】本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质.5、【解析】【分析】由,根据圆周角定理得出,根据S阴影=S扇形AOB-可得出结论.【详解】解:∵,∴,∴S阴影=S扇形AOB-,故答案为:.【考点】本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键.四、解答题1、(1)250;(2)当小丽出发第时,两人相距最近,最近距离是【解析】【分析】(1)由x=0时,根据-求得结果即可;(2)求出两人相距的函数表达式,求出最小值即可.【详解】解(1)当x=0时,=2250,=2000∴-=2250-2000=250(m)故答案为:250(2)设小丽出发第时,两人相距,则即其中因此,当时S有最小值,也就是说,当小丽出发第时,两人相距最近,最近距离是【考点】此题主要考查了二次函数的性质的应用,熟练掌握二次函数的性质是解答本题的关键.2、(1);(2)最大利润为3840元【解析】【分析】(1)分为8≤x≤32和32<x≤40求解析式;(2)根据“利润=(售价−成本)×销售量”列出利润的表达式,在根据函数的性质求出最大利润.【详解】解:(1)当8≤x≤32时,设y=kx+b(k≠0),则,解得:,∴当8≤x≤32时,y=−3x+216,当32<x≤40时,y=120,∴;(2)设利润为W,则:当8≤x≤32时,W=(x−8)y=(x−8)(−3x+216)=−3(x−40)2+3072,∵开口向下,对称轴为直线x=40,∴当8≤x≤32时,W随x的增大而增大,∴x=32时,W最大=2880,当32<x≤40时,W=(x−8)y=120(x−8)=120x−960,∵W随x的增大而增大,∴x=40时,W最大=3840,∵3840>2880,∴最大利润为3840元.【考点】点评:本题以利润问题为背景,考查了待定系数法求一次函数的解析式、分段函数的表示、二次函数的性质,本题解题的时候要注意分段函数对应的自变量x的取值范围和函数的增减性,先确定函数的增减性,才能求得利润的最大值.3、(1)见解析;(2)见解析;(3)C2(2,3).【解析】【分析】(1)根据平移的方法将三点向右平移2个单位得到,然后将三个点连起来即可;(2)根据旋转的方法将三点绕点O顺时针方向旋转90°得到,然后将三个点连起来即可;(3)根据(2)中描出的点C2的位置即可写出C2点的坐标.【详解】解:(1)如图所示,△A1B1C1即为所求,(2)如图所示,△A2B2C2即为所求,(3)由(2)中点C2的位置可得,C2点的坐标为(2,3).【考点】此题考查了平面直角坐标系中的平移和旋转变换作图以及求点的坐标,解题的关键是熟练掌握平移和旋转变换的方法.4、(1)证明见解析;(2)35°【解析】【详解】试题分析:(1)要证明CB∥PD,只要证明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解决问题;(2)在Rt△CEB中,求出∠C即可解决问题.试题解析:(1)如图,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【考点】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知识.5、(1).(2).【解析】【分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安陆市2025-2026学年七年级上学期语文月考测试试卷
- 阿勒泰地区2025-2026学年七年级下学期语文期中模拟试卷
- 安徽省阜阳市颍上县2023-2024学年高三上学期第一次月考地理试卷及答案
- 2025 年小升初上海市初一新生分班考试英语试卷(带答案解析)-(牛津版)
- 海门市悦来初中2025中考英语专题复习-词汇、完形填空(无答案)
- 社区消防知识培训课件制度
- 2025年广东省肇庆市端州区中考一模物理试题(含答案)
- 上海租赁中介合同范本
- 甲乙合作开店合同范本
- 快递寄件合同范本
- 承保实务非车险课件
- 幼儿园教学活动设计方法
- 无人机项目融资计划书
- 液氧站施工方案
- GB/T 16886.12-2023医疗器械生物学评价第12部分:样品制备与参照材料
- 16J934-3中小学校建筑设计常用构造做法
- 发泡模具验收报告
- 【优质课件】高效能人士的七个习惯分享手册
- 音乐ppt课件《村晚》
- 周绍华教授治疗抑郁症经验
- 分镜头脚本设计-影视广告分镜头课件
评论
0/150
提交评论