2024-2025学年河北省任丘市中考数学复习提分资料及答案详解【易错题】_第1页
2024-2025学年河北省任丘市中考数学复习提分资料及答案详解【易错题】_第2页
2024-2025学年河北省任丘市中考数学复习提分资料及答案详解【易错题】_第3页
2024-2025学年河北省任丘市中考数学复习提分资料及答案详解【易错题】_第4页
2024-2025学年河北省任丘市中考数学复习提分资料及答案详解【易错题】_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省任丘市中考数学复习提分资料考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=25°,则∠OCD=(

).A.50° B.40° C.70° D.30°2、距考试还有20天的时间,为鼓舞干劲,老师要求班上每一名同学要给同组的其他同学写一份拼搏进取的留言,小明所在的小组共写了30份留言,该小组共有()A.7人 B.6人 C.5人 D.4人3、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是(

)A. B.C. D.4、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米 B.5米 C.2米 D.7米5、如图,,是上直径两侧的两点.设,则(

)A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、下列四个命题中正确的是(

)A.与圆有公共点的直线是该圆的切线B.垂直于圆的半径的直线是该圆的切线C.到圆心的距离等于半径的直线是该圆的切线D.过圆直径的端点,垂直于此直径的直线是该圆的切线2、下列四个说法中,不正确的是(

)A.一元二次方程有实数根B.一元二次方程有实数根C.一元二次方程有实数根D.一元二次方程x2+4x+5=a(a≥1)有实数根3、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:x…-10123…y…30-1m3…①抛物线开口向下;②抛物线的对称轴为直线;③方程的两根为0和2;④当时,x的取值范围是或.正确的是(

)A.① B.② C.③ D.④4、二次函数(,,为常数,)的部分图象如图所示,图象顶点的坐标为,与轴的一个交点在点和点之间,给出的四个结论中正确的有(

)A. B.C. D.时,方程有解5、下列命题不正确的是(

)A.三角形的内心到三角形三个顶点的距离相等B.三角形的内心不一定在三角形的内部C.等边三角形的内心,外心重合D.一个圆一定有唯一一个外切三角形第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、写出一个满足“当时,随增大而减小”的二次函数解析式______.2、如图,已知是的直径,且,弦,点是弧上的点,连接、,若,则的长为______.3、“降次”是解一元二次方程的基本思想,用这种思想解高次方程x3-x=0,它的解是_____________.4、如图,正方形ABCD的边长为6,点E在边CD上.以点A为中心,把△ADE顺时针旋转90°至△ABF的位置.若DE=2,则FE=___.5、若抛物线的图像与轴有交点,那么的取值范围是________.四、解答题(6小题,每小题10分,共计60分)1、如图,抛物线y=a(x﹣2)2+3(a为常数且a≠0)与y轴交于点A(0,).(1)求该抛物线的解析式;(2)若直线y=kx(k≠0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x22=10时,求k的值;(3)当﹣4<x≤m时,y有最大值,求m的值.2、如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.3、已知关于的二次函数.(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;(2)若,两点在该二次函数的图象上,直接写出与的大小关系;(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值.4、一个二次函数y=(k﹣1).求k值.5、用适当的方法解下列方程:(1)x2-x-1=0;(2)3x(x-2)=x-2;(3)x2-2x+1=0;(4)(x+8)(x+1)=-12.6、某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.x407090y1809030W360045002100(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.-参考答案-一、单选题1、C【解析】【分析】根据圆周角定理求出∠DOB,根据等腰三角形性质求出∠OCD=∠ODC,根据三角形内角和定理求出即可.【详解】解:连接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故选:C.【考点】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目比较典型,难度适中.2、B【解析】【分析】设小组有x人,根据题意,得x(x-1)=30,解方程即可.【详解】设小组有x人,根据题意,得x(x-1)=30,整理,得,解方程,得(舍去),故选B.【考点】本题考查了一元二次方程的应用,熟练掌握方程的应用是解题的关键.3、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可.【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线是y=2(x−2)2;由“上加下减”的原则可知,抛物线y=2(x−2)2向下平移1个单位所得抛物线是y=2(x−2)2−1.故选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.4、B【解析】【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为-7,∴点E坐标为(-7,-),

∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴顶点为A的小孔所在抛物线的解析式为y=-(x﹣b)2,∵大孔水面宽度为20米,∴当x=-10时,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴单个小孔的水面宽度=|(+b)-(-+b)|=5(米),故选:B.【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.5、D【解析】【分析】先利用直径所对的圆周角是直角得到∠ACB=90°,从而求出∠BAC,再利用同弧所对的圆周角相等即可求出∠BDC.【详解】解:∵C,D是⊙O上直径AB两侧的两点,∴∠ACB=90°,∵∠ABC=25°,∴∠BAC=90°-25°=65°,∴∠BDC=∠BAC=65°,故选:D.【考点】本题考查了圆周角定理的推论,即直径所对的圆周角是90°和同弧或等弧所对的圆周角相等,解决本题的关键是牢记相关概念与推论,本题蕴含了属性结合的思想方法.二、多选题1、CD【解析】【分析】要正确理解切线的定义:和圆有唯一公共点的直线是圆的切线.掌握切线的判定:①经过半径的外端,且垂直于这条半径的直线,是圆的切线;②到圆心的距离等于半径的直线是该圆的切线.【详解】解:A中,与圆有两个公共点的直线,是圆的割线,故该选项不符合题意;B中,应经过此半径的外端,故该选项不符合题意;C中,根据切线的判定方法,故该选项符合题意;D中,根据切线的判定方法,故该选项符合题意.故选:CD.【考点】本题考查了切线的判定.注意掌握切线的判定定理与切线的定义是解此题的关键.2、ABC【解析】【分析】判断上述方程的根的情况,只要看根的判别式△的值的符号就可以了.【详解】解:、△,方程无实数根,错误,符合题意;、△,方程无实数根,错误,符合题意;、△,方程无实数根,错误,符合题意;、△,方程有实数根,正确,不符合题意;故选:ABC.【考点】本题考查了一元二次方程根的情况与判别式△的关系:解题的关键是掌握(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.3、CD【解析】【分析】根据表格可知直线x=1是抛物线对称轴,此时有最小值,与x轴交点坐标为(0,0)(2,0)据此可判断①②③,根据与x轴交点坐标结合开口方向可判断④.【详解】解:从表格可以看出,函数的对称轴是直线x=1,顶点坐标为(1,﹣1),此时有最小值∴函数与x轴的交点为(0,0)、(2,0),∴抛物线y=ax2+bx+c的开口向上故①错误;抛物线y=ax2+bx+c的对称轴为直线x=1故②错误;方程ax2+bx+c=0的根为0和2故③正确;当y>0时,x的取值范围是x<0或x>2故④正确;故选CD.【考点】本题考查了二次函数的图象和性质.解题的关键在于根据表格获取正确的信息.4、BCD【解析】【分析】根据抛物线与轴有两个交点,可知,即可判断A选项;根据时,,即可判断B选项;根据对称轴,即可判断C选项;D.根据抛物线的顶点坐标为,函数有最大即可判定D.【详解】解:由图象可知,抛物线开口向下,对称轴在轴的右侧,与轴的交点在轴的负半轴,∵抛物线与轴有两个交点,∴,∴,即,故A错误;由图象可知,时,,∴,故B正确;∵抛物线的顶点坐标为,∴,,∵,∴,即,故C正确;∵抛物线的开口向下,顶点坐标为,∴(为任意实数),即时,方程有解.故D正确.故选BCD.【考点】本题主要考查了二次函数的性质、二次函数图像等知识点,掌握二次函数的性质与解析式的关系是解答本题的关键.5、ABD【解析】【分析】根据三角形内心的定义和圆的外切三角形的定义判断即可.【详解】解:A、三角形的内心是三个内角平分线的交点,内心到三角形三边的距离相等,错误,该选项符合题意;B、三角形的内心是三个内角平分线的交点,三角形的内心一定在三角形的内部,错误,该选项符合题意;C、等边三角形的内心,外心重合,正确,该选项不符合题意;D、经过圆上的三点作圆的切线,三条切线相交,即可得到圆的一个外切三角形,所以一个圆有无数个外切三角形,错误,该选项符合题意;故选:ABD.【考点】本题主要考查了内心和外心以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义与定理.三、填空题1、(答案不唯一)【解析】【分析】先根据二次函数的图象和性质取对称轴x=2,设抛物线的解析式为y=a(x-2)2,由于在抛物线对称轴的右边,y随x增大而减小,得出a<0,于是去a=-1,即可解答.【详解】解:设抛物线的解析式为y=a(x-2)2,∵在抛物线对称轴的右边,y随x增大而减小,∴a<0,符合上述条件的二次函数均可,可取a=-1,则y=-(x-2)2.故答案为:y=-(x-2)2.【考点】本题考查了二次函数的图象和性质,解题的关键是掌握二次函数的图象和性质.2、9【解析】【分析】连接OC和OE,由同弧所对的圆周角等于圆心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂径定理求出CD.【详解】解:连接OC和OE,如下图所示:由同弧所对的圆周角等于圆心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH为30°,60°,90°的三角形,其三边之比为,∴CH=,∴CD=2CH=9,故答案为:9.【考点】本题考查了圆周角定理及垂径定理等相关知识点,本题的关键是求出∠COB=60°.3、【解析】【分析】先把方程的左边分解因式,再化为三个一次方程进行降次,再解一次方程即可.【详解】解:则或或解得:故答案为:【考点】本题考查的是利用因式分解的方法把高次方程转化为一次方程,掌握“因式分解的方法与应用”是解本题的关键.4、【解析】【分析】由旋转的性质可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【详解】解:∵把△ADE顺时针旋转90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴点F,点B,点C共线,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根据勾股定理得:EF=,故答案为:.【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键.5、【解析】【分析】由抛物线的图像与轴有交点可知,从而可求得的取值范围.【详解】解:∵抛物线的图像与轴有交点∴令,有,即该方程有实数根∴∴.故答案是:【考点】本题考查了二次函数与轴的交点情况与一元二次方程分的情况的关系、解一元一次不等式,能由已知条件列出关于的不等式是解题的关键.四、解答题1、(1);(2);(3)【解析】【分析】(1)把代入抛物线的解析式,解方程求解即可;(2)联立两个函数的解析式,消去得:再利用根与系数的关系与可得关于的方程,解方程可得答案;(3)先求解抛物线的对称轴方程,分三种情况讨论,当<<结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.【详解】解:(1)把代入中,抛物线的解析式为:(2)联立一次函数与抛物线的解析式得:整理得:∵x1+x2=4-3k,x1•x2=-3,∴x12+x22=(4-3k)2+6=10,解得:∴(3)∵函数的对称轴为直线x=2,当m<2时,当x=m时,y有最大值,=-(m-2)2+3,解得m=±,∴m=-,当m≥2时,当x=2时,y有最大值,∴=3,∴m=,综上所述,m的值为-或.【考点】本题考查的是利用待定系数法求解抛物线的解析式,抛物线与轴的交点坐标,一元二次方程根与系数的关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.2、(1),M(,);(2),(,);(3)证明见试题解析.【解析】【详解】试题分析:(1)利用配方法把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶点坐标;(2)连接BC,则BC与对称轴的交点为R,此时CR+AR的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,).根据NPAB=,列出方程,解方程得到点P坐标,再计算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切线的判定定理即可证明直线MP是⊙N的切线.试题解析:(1)∵=,∴抛物线的解析式化为顶点式为:,顶点M的坐标是(,);(2)∵,∴当y=0时,,解得x=1或6,∴A(1,0),B(6,0),∵x=0时,y=﹣3,∴C(0,﹣3).连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC==.设直线BC的解析式为,∵B(6,0),C(0,﹣3),∴,解得:,∴直线BC的解析式为:,令x=,得y==,∴R点坐标为(,);(3)设点P坐标为(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB为直径的⊙N的半径为AB=,∴NP=,即,移项得,,得:,整理得:,解得(与A重合,舍去),,(在对称轴的右侧,舍去),(与B重合,舍去),∴点P坐标为(2,2).∵M(,),N(,0),∴==,==,==,∴,∴∠MPN=90°,∵点P在⊙N上,∴直线MP是⊙N的切线.考点:1.二次函数综合题;2.最值问题;3.切线的判定;4.压轴题.3、(1)见解析(2)(3)的值为1或-5【解析】【分析】(1)计算判别式的值,得到,即可判定;(2)计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;(3)先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可.(1)证明:令,则∴∴不论为何实数,方程有两个不相等的实数根∴无论为何实数,该二次函数的图象与轴总有两个公共点(2)解:二次函数的对称轴为:直线∵,抛物线开口向上∴抛物线上的点离对称轴越远对应的函数值越大∵∴M点到对称轴的距离为:1N点到对称轴的距离为:2∴(3)解:∵抛物线∴沿轴翻折后的函数解析式为∴该抛物线的对称轴为直线①若,即,则当时,有最小值∴解得,∵∴②若,即,则当时,有最小值-1不合题意,舍去③若,,则当时,有最小值∴解得,∵∴综上,的值为1或-5【考点】本题考查了抛物线与x轴的交点以及二次函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键.4、k=2【解析】【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论