2024-2025学年河南省舞钢市中考数学真题分类(平行线的证明)汇编章节练习练习题(含答案详解)_第1页
2024-2025学年河南省舞钢市中考数学真题分类(平行线的证明)汇编章节练习练习题(含答案详解)_第2页
2024-2025学年河南省舞钢市中考数学真题分类(平行线的证明)汇编章节练习练习题(含答案详解)_第3页
2024-2025学年河南省舞钢市中考数学真题分类(平行线的证明)汇编章节练习练习题(含答案详解)_第4页
2024-2025学年河南省舞钢市中考数学真题分类(平行线的证明)汇编章节练习练习题(含答案详解)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省舞钢市中考数学真题分类(平行线的证明)汇编章节练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,,的角平分线交于点,若,,则的度数(

)A. B. C. D.2、如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15,则∠2=()A.95 B.105 C.115 D.1253、将一个直角三角板和一把直尺按如图所示的方式摆放,若∠2=55°,则∠1的度数为(

)A.45° B.55° C.25° D.35°4、如图,点E在射线AB上,要ADBC,只需(

)A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°5、如图,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,则∠AEB的度数为()A.100° B.110° C.120° D.130°6、将一副三角尺按如图所示的方式摆放,则的大小为(

)A. B. C. D.7、如图,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一点,将ACD沿CD翻折后得到CED,边CE交AB于点F.若DEF中有两个角相等,则∠ACD的度数为(

)A.15°或20° B.20°或30° C.15°或30° D.15°或25°8、如图,将沿翻折,三个顶点恰好落在点处.若,则的度数为(

)A. B.C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、说明命题“若x>-4,则x2>16”是假命题的一个反例可以是_______.2、如图,在△ABC中,∠C=62°,△ABC两个外角的角平分线相交于G,则∠G的度数为_____.3、如图,四边形ABCD中,点M,N分别在AB,BC上,将沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=___°.4、把“对顶角相等”改写成“如果…那么…”的形式____________________________________________.5、将△ABC沿着DE翻折,使点A落到点A′处,A′D、A′E分别与BC交于M、N两点,且DEBC.已知∠A′NM=27°,则∠NEC=_____.6、命题“全等三角形的对应角相等”的逆命题是_____命题.(填“真”或“假”)7、如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是__.三、解答题(7小题,每小题10分,共计70分)1、如图,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度数.2、如图所示,已知,试判断与的大小关系,并说明理由.3、如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.4、问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_________度,________度,_________度;(2)类比探索:请猜想与的关系,并说明理由;(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式.5、如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE,(2)若∠A=100°,∠C=50°,求∠AEB的度数.6、已知:如图,A、F、C、D在同一直线上,AB∥DE,AB=DE,AF=CD,求证:(1)BC=EF;(2)BC∥EF.7、如图,在中,.(1)如图①所示,直线过点,于点,于点,且.求证:.(2)如图②所示,直线过点,交于点,交于点,且,则是否成立?请说明理由.-参考答案-一、单选题1、A【解析】【分析】法一:延长PC交BD于E,设AC、PB交于F,根据三角形的内角和定理得到∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根据三角形的外角性质得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD−∠D,根据PB、PC是角平分线得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A−∠D,代入即可求出∠P.法二:延长DC,与AB交于点E.设AC与BP相交于O,则∠AOB=∠POC,可得∠P+∠ACD=∠A+∠ABD,代入计算即可.【详解】解:法一:延长PC交BD于E,设AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD−∠D,∴∠P+∠PBE=∠PCD−∠D,∴2∠P+∠PCF+∠PBE=∠A−∠D+∠ABF+∠PCD,∵PB、PC是角平分线∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A−∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD=∠A+∠AEC=48°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=48°+∠AEC=48°+∠ABD+10°,整理得∠ACD−∠ABD=58°.设AC与BP相交于O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=48°−(∠ACD−∠ABD)=19°.故选A.【考点】本题主要考查对三角形的内角和定理,三角形的外角性质,对顶角的性质,角平分线的性质等知识点的理解和掌握,能熟练地运用这些性质进行计算是解此题的关键.2、B【解析】【分析】利用垂直定义和三角形内角和定理计算出∠ADC的度数,再利用平行线的性质可得∠3的度数,再根据邻补角的性质可得答案.【详解】解:∵AC⊥AB,∴∠A=90,∵∠1=15,∴∠ADC=180-90-15=75,∵l1∥l2,∴∠3=∠ADC=75,∴∠2=180-75=105,故选:B.【考点】此题主要运用垂直定义、三角形内角和定理以及平行线的性质,解决角之间的关系,本题关键是掌握两直线平行,同位角相等.3、D【解析】【分析】先对图形标注,再根据平行线的性质得∠1=∠4,然后根据直角三角形两个锐角互余及对顶角相等得出答案.【详解】如图,∵,∴∠1=∠4(两直线平行,内错角相等).∵∠2=∠3(对顶角相等),∴∠1+∠2=∠3+∠4=90°,∴∠1=90°﹣∠2=35°.故选:D.【考点】本题考查平行线的性质及三角形内角和定理,灵活得选择平行线的性质是解题的关键.4、A【解析】【分析】根据平行线的判定定理:同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行,逐项进行判断,即可求解.【详解】解:∵∠A=∠CBE,∴ADBC.故选:A.【考点】本题考查了平行线的判定,解题的关键是掌握平行线的判定方法.5、B【解析】【分析】根据两直线平行,可得∠BAD=∠ABE=20°,因为BE平分∠ABC,所以∠ABE=∠EBC=20°,所以得到∠ABC=40°,从而求出∠EAB=50°,根据三角形内角和即可得到∠AEB的度数.【详解】解:∵BE∥AD∴∠BAD=∠ABE=20°∵BE平分∠ABC∴∠ABE=∠EBC=20°∴∠ABC=40°∵∠C=90°∴∠EAB=50°∴∠AEB=180°-∠EAB-∠ABE=180°-50°-20°=110°故选B.【考点】本题考查了平行线的性质,角平分线和三角形内角和,能够找出内错角以及熟悉三角形内角和为180°是解决本题的关键.6、B【解析】【分析】先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.【详解】解:如图所示,由一副三角板的性质可知:∠ECD=60°,∠BCA=45°,∠D=90°,∴∠ACD=∠ECD-∠BCA=60°-45°=15°,∴∠α=180°-∠D-∠ACD=180°-90°-15°=75°,故选:B.【考点】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.7、C【解析】【分析】由三角形的内角和定理可求解∠A=40°,设∠ACD=x°,则∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,可分三种情况:当∠DFE=∠E=40°时;当∠FDE=∠E=40°时;当∠DFE=∠FDE时,根据∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【详解】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B-∠A=10°,∴∠A=40°,∠B=50°,设∠ACD=x°,则∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,当∠DFE=∠E=40°时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°-40°-40°=100°,∴140°-x=100°+40°+x,解得x=0(不存在);当∠FDE=∠E=40°时,∴140°-x=40°+40°+x,解得x=30°,即∠ACD=30°;当∠DFE=∠FDE时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE==70°,∴140°-x=70°+40°+x,解得x=15,即∠ACD=15°,综上,∠ACD=15°或30°,故选:C.【考点】本题主要考查直角三角形的性质,等腰三角形的性质,三角形的内角和定理,根据∠ADC=∠CDE分三种情况列方程是解题的关键.8、D【解析】【分析】根据翻折变换前后对应角不变,故∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,进而求出∠1+∠2的度数.【详解】解:∵将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,∴∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,∵∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°,∴∠1+∠2=360°-180°=180°,∵∠1=40°,∴∠2=140°,故选:D.【考点】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°是解题关键.二、填空题1、x=-3,答案不唯一【解析】【分析】当x=-3时,满足x>-4,但不能得到x2>16,于是x=-3可作为说明命题“x>-4,则x2>16”是假命题的一个反例.【详解】说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=-3.故答案为-3.【考点】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2、59°##59度【解析】【分析】先利用三角形内角和定理求出∠CAB+∠CBA=180°-∠C=118°,从而利用三角形外角的性质求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分线的定义求出,由此求解即可.【详解】解:∵∠C=62°,∴∠CAB+∠CBA=180°-∠C=118°,∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,∵△ABC两个外角的角平分线相交于G,∴,,∴,∴∠G=180°-∠GAB-∠GBA=59°,故答案为:59°.【考点】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.3、95【解析】【详解】∵MF//AD,FN//DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°.∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°.在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.故答案为:954、如果两个角是对顶角,那么它们相等【解析】【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式.【详解】解:∵原命题的条件是:“两个角是对顶角”,结论是:“它们相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么它们相等”.故答案为:如果两个角是对顶角,那么它们相等.【考点】本题考查了命题的条件和结论的叙述,注意确定一个命题的条件与结论的方法是首先把这个命题写成:“如果…,那么…”的形式.5、126°【解析】【分析】利用平行线的性质求出∠DEN=27°,再利用翻折不变性得到∠AED=∠DEN=27°,再根据平角的性质即可解决问题.【详解】解:∵DE∥BC,∴∠DEN=∠A′NM=27°,由翻折不变性可知:∠AED=∠DEN=27°,∴∠NEC=180°﹣2×27°=126°,故答案为126°.【考点】本题考查翻折变换,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6、假【解析】【分析】首先分清题设是:两个三角形全等,结论是:对应角相等,把题设与结论互换即可得到逆命题,然后判断正误即可.【详解】解:“全等三角形的对应角相等”的题设是:两个三角形全等,结论是:对应角相等,因而逆命题是:对应角相等的三角形全等.是一个假命题.故答案为:假.【考点】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7、55°【解析】【详解】,,.三、解答题1、∠1=36°,∠2=72°.【解析】【分析】在△ABC和△BDC中,根据三角形内角和定理,即可得出结论.【详解】在△ABC中,∠ABC=180°﹣∠A﹣∠C=180°-36°-72°=72°,∴∠1=∠ABC﹣∠DBC=72°-36°=36°;在△BCD中,∠2=180°﹣∠DBC﹣∠C=180°-36°-72°=72°.【考点】本题考查了三角形的内角和定理,注意掌握数形结合思想的应用.2、,理由见解析【解析】【分析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【详解】解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠4.∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).【考点】本题重点考查平行线的性质和判定,难度适中.3、(1)见解析;(2)见解析【解析】【分析】(1)先由平行线的性质得∠B=∠C,再由得出,从而利用SAS判定△ABF≌△DCE;(2)根据全等三角形的性质得∠AFB=∠DEC,由等角的补角相等可得∠AFE=∠DEF,再由平行线的判定可得结论.(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,∵,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∵∠AFB+∠AFE=180°,∠DEC+∠DEF=180°,∴∠AFE=∠DEF,∴AF∥DE.【考点】本题考查了平行线的判定、全等三角形的判定与性质,证明△ABF≌△DCE是解题的关键.4、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,证明见解析;(3)结论不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【解析】【分析】(1)根据三角形内角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根据三角形内角和定理进行等量转换,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;

(2)猜想:∠ABP+∠ACP=90°-∠A;

证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.

(3)判断:(2)中的结论不成立.

证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠PBC-∠ABP,∠ACB=∠PCB-∠ACP,∴(∠PBC+∠PCB)-(∠ABP+∠ACP)=180°-∠A,又∵在Rt△PBC中,∠P=90°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论