2022年湖北省利川市中考数学试题含答案详解(轻巧夺冠)_第1页
2022年湖北省利川市中考数学试题含答案详解(轻巧夺冠)_第2页
2022年湖北省利川市中考数学试题含答案详解(轻巧夺冠)_第3页
2022年湖北省利川市中考数学试题含答案详解(轻巧夺冠)_第4页
2022年湖北省利川市中考数学试题含答案详解(轻巧夺冠)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省利川市中考数学试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是()A..等腰三角形 B.等边三角形C..直角三角形 D..等腰直角三角形2、用配方法解方程时,原方程应变形为(

)A. B. C. D.3、如图,五边形是⊙O的内接正五边形,则的度数为(

)A. B. C. D.4、如图,,是上直径两侧的两点.设,则(

)A. B. C. D.5、下列判断正确的个数有()①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个 B.2个 C.3个 D.4个二、多选题(5小题,每小题3分,共计15分)1、如图,已知抛物线.将该抛物线在x轴及x轴下方的部分记作C1,将C1沿x轴翻折构成的图形记作C2,将C1和C2构成的图形记作C3.关于图形C3,给出的下列四个结论,正确的是(

)A.图形C3恰好经过4个整点(横、纵坐标均为整数的点)B.图形C3上任意一点到原点的最大距离是1C.图形C3的周长大于2πD.图形C3所围成区域的面积大于2且小于π2、(多选)若数使关于的一元二次方程有两个不相等的实数解,且使关于的分式方程的解为非负整数,则满足条件的的值为(

)A.1 B.3 C.5 D.73、如图,AB是圆O的直径,点G是圆上任意一点,点C是的中点,,垂足为点E,连接GA,GB,GC,GD,BC,GB与CD交于点F,则下列表述正确的是(

)A. B.C. D.4、下面一元二次方程的解法中,不正确的是(

)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x两边同除以x,得x=15、如图,为的直径延长线上的一点,与相切,切点为,是上一点,连接.已知,则下列结论正确的为(

)A.与相切 B.四边形是菱形C. D.第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,四边形内接于,若,则_______°.2、斛是中国古代的一种量器.据《汉书.律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”.如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.3、如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70º,那么∠C的度数为_______.4、如图,在⊙O中,=,AB=10,BC=12,D是上一点,CD=5,则AD的长为______.5、不透明袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黄球的概率是_______.四、简答题(2小题,每小题10分,共计20分)1、如图,在平面直角坐标系中,点为坐标原点.抛物线交轴于、两点,交轴于点,直线经过、两点.(1)求抛物线的解析式;(2)过点作直线轴交抛物线于另一点,过点作轴于点,连接,求的值.2、定义:若一个三角形最长边是最短边的2倍,我们把这样的三角形叫做“和谐三角形”.在△ABC中,点F在边AC上,D是边BC上的一点,AB=BD,点A,D关于直线l对称,且直线l经过点F.(1)如图1,求作点F;(用直尺和圆规作图保留作图痕迹,不写作法)(2)如图2,△ABC是“和谐三角形”,三边长BC,AC,AB分别a,b,c,且满足下列两个条件:a≠2b,和a2+4c2=4ac+a﹣b﹣1.①求a,b之间的等量关系;②若AE是△ABD的中线.求证:△ACE是“和谐三角形”.五、解答题(4小题,每小题10分,共计40分)1、如图,AB是⊙O的直径,弦CD⊥AB于点E,点P⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若∠ABC=55°,求∠P的度数.2、如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.3、如图,AB是⊙O的直径,点D,E在⊙O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C.(1)求证:CD是⊙O的切线.(2)若,求阴影部分的面积.4、用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).-参考答案-一、单选题1、D【分析】根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.【详解】解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故选:D.【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.2、D【解析】【分析】移项,配方,变形后即可得出选项.【详解】解:x2-4x=1,x2-4x+4=1+4,∴(x-2)2=5,故选:D.【考点】本题考查了解一元二次方程,能够正确配方是解此题的关键.3、D【解析】【分析】先根据正五边形的内角和求出每个内角,再根据等边对等角得出∠ABE=∠AEB,然后利用三角形内角和求出∠ABE=即可.【详解】解:∵五边形是⊙O的内接正五边形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故选:D.【考点】本题考查圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算,掌握圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算是解题关键.4、D【解析】【分析】先利用直径所对的圆周角是直角得到∠ACB=90°,从而求出∠BAC,再利用同弧所对的圆周角相等即可求出∠BDC.【详解】解:∵C,D是⊙O上直径AB两侧的两点,∴∠ACB=90°,∵∠ABC=25°,∴∠BAC=90°-25°=65°,∴∠BDC=∠BAC=65°,故选:D.【考点】本题考查了圆周角定理的推论,即直径所对的圆周角是90°和同弧或等弧所对的圆周角相等,解决本题的关键是牢记相关概念与推论,本题蕴含了属性结合的思想方法.5、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.二、多选题1、ABD【解析】【分析】画出图象C3,以及以O为圆心,以1为半径的圆,再作出⊙O内接正方形,根据图象即可判断.【详解】解:如图所示,A.图形C3恰好经过(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4个整点,故正确;B.由图象可知,图形C3上任意一点到原点的距离都不超过1,故正确;C.图形C3的周长小于⊙O的周长,所以图形C3的周长小于2π,故错误;D.图形C3所围成的区域的面积小于⊙O的面积,大于⊙O内接正方形的面积,所以图形C3所围成的区域的面积大于2且小于π,故正确;故选:ABD.【考点】本题考查了二次函数的图象与几何变换,数形结合是解题的关键.2、AC【解析】【分析】根据一元二次方程根的判别式及分式有意义的条件和分式方程的解为非负整数分别求出a的取值范围,即可得答案.【详解】∵关于的一元二次方程有两个不相等的实数解,∴,解得:,∵,∴,解得:,∵关于的分式方程的解为非负整数,∴且,解得:且,∴且a≠3,∵是整数,∴a=1或5,故选:AC.【考点】本题考查一元二次方程根的判别式、解分式方程及分式有意义的条件,正确得出两个不等式的解集是解题关键,注意分式的分母不为0的隐含条件,避免漏解.3、ACD【解析】【分析】根据垂径定理和圆周角定理可以判断A,根据圆周角定理可以判断B,根据圆周角定理、垂径定理以及等角对等边,即可判断C,根据圆周角定理、垂径定理以及平行线的判定,即可判断D.【详解】解:∵AB是圆O的直径,,∴,∴,故A正确;∵AB是圆O的直径,,∴,∵,即,也没有其他条件可以证得和的另外一组内角对应相等,∴不能证得,故B不正确;∵点C是的中点,∴,∴,∵AB是圆O的直径,,∴,∴,∴,∴,故C正确;∵点C是的中点,∴,∵AB是圆O的直径,,∴,∴,∴,∴,故D正确.故选ACD.【考点】本题主要考查了垂径定理、圆周角定理、等腰三角形的判定以及平行线的判定.4、ACD【解析】【分析】各方程求出解,即可作出判断.【详解】解:A、方程整理得:x2-8x-5=0,这里a=1,b=-8,c=-5,∵△=64+20=84,∴,故选项A符合题意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故选项B不符合题意;C、方程整理得:x2+8x+4=0,解得:,故选项C符合题意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故选项D符合题意,故选:ACD.【考点】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.5、ABCD【解析】【分析】A、利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;B、利用A项所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;C、利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出答案;D、利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.【详解】A、连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故A正确;B、由A项得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故B正确;C、连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故C正确;D、∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故D正确;故选:ABCD.【考点】此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.三、填空题1、104【解析】【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=180°﹣76°=104°,故答案为:104.【考点】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.2、【分析】如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.【详解】解:如图,∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∴CE是直径,∠ECD=45°,根据题意得:AB=2.5,,∴,∴,即此斛底面的正方形的边长为尺.故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.3、35°【分析】利用圆周角定理求出所求角度数即可.【详解】解:与都对,且,,故答案为:.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.4、3【分析】过A作AE⊥BC于E,过C作CF⊥AD于F,根据圆周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF,AF即可求解.【详解】解:过A作AE⊥BC于E,过C作CF⊥AD于F,则∠AEB=∠CFD=90°,∵=,AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,则,∴AD=DF+AF=3+2,故答案为:3+2.【点睛】本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.5、【解析】【分析】用黄球的个数除以总球的个数即可得出取出黄球的概率.【详解】解:∵不透明的袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,∴从袋子中随机取出1个球,则它是黄球的概率为;故答案为:.【考点】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.四、简答题1、(1);(2)【解析】【分析】(1)首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;(2)如图,过点C作直线CD⊥y轴交抛物线于点D,过点D作DE⊥x轴于点E,连接BD,构造Rt△DEB,欲求锐角三角函数定义tan∠BDE=,先求线段BE,DE的长度即可.【详解】(1)解:∵直线经过、两点,易得点,,代入抛物线中,得解之得∴抛物线的解析式为.(2)解:如图,过点作直线轴交抛物线于点,过点作轴于点,连接.∵抛物线的对称轴为,点为,∴点为,从而得,.∵点为∴,在中,,∴.【考点】本题考查了抛物线与x轴的交点坐标,二次函数的图象与性质、一次函数的图象与性质以及三角函数等知识点,解题时,注意辅助线的作法.2、(1)见解析(2)①a=b+1②见解析【解析】【分析】(1)作AD的垂直平分线,交AC于F点即可;(2)①根据题意得到a=2c,联立a2+4c2=4ac+a﹣b﹣1即可求解;②证明△ABE∽△CBA,得到,故可求解.【详解】(1)如图,点F为所求;(2)①∵△ABC是“和谐三角形”∴a=2c又a2+4c2=4ac+a﹣b﹣1.联立化简得到a=b+1;②∵E点是BD中点∴BE=由①得到AB=∴又∠ABE=∠CBA∴△ABE∽△CBA∴故△ACE是“和谐三角形”.【考点】此题主要考查相似三角形的判定与性质,解题的关键是熟知垂直平分线的做法.五、解答题1、(1)证明见解析;(2)35°【解析】【详解】试题分析:(1)要证明CB∥PD,只要证明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解决问题;(2)在Rt△CEB中,求出∠C即可解决问题.试题解析:(1)如图,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【考点】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知识.2、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、、、为顶点的四边形是平行四边形,,点坐标为,,.【解析】【分析】(1)将点,代入即可求解;(2)BC与对称轴的交点即为符合条件的点,据此可解;(3)过点作轴于点,交直线与点,当EF最大时面积的取得最大值,据此可解;(4)根据平行四边形对边平行且相等的性质可以得到存在点N使得以B,C,M,N为顶点的四边形是平行四边形.分三种情况讨论.【详解】解:(1)抛物线过点,解得:抛物线解析式为.(2)点,∴抛物线对称轴为直线点在直线上,点,关于直线对称,当点、、在同一直线上时,最小.抛物线解析式为,∴C(0,-6),设直线解析式为,解得:直线:,,故答案为:.(3)过点作轴于点,交直线与点,设,则,当时,面积最大为,此时点坐标为.(4)存在点,使以点、、、为顶点的四边形是平行四边形.设N(x,y),M(,m),①四边形CMNB是平行四边形时,CM∥NB,CB∥MN,,∴x=,∴y==,∴N(,);②四边形CNBM是平行四边形时,CN∥BM,CM∥BN,,∴x=,∴y==∴N(,);③四边形CNMB是平行四边形时,CB∥MN,NC∥BM,,∴x=,∴y==∴N(,);点坐标为(,),(,),(,).【考点】本题考查二次函数与几何图形的综合题,熟练掌握二次函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论