2023年湖北省赤壁市中考数学全真模拟模拟题附参考答案详解【达标题】_第1页
2023年湖北省赤壁市中考数学全真模拟模拟题附参考答案详解【达标题】_第2页
2023年湖北省赤壁市中考数学全真模拟模拟题附参考答案详解【达标题】_第3页
2023年湖北省赤壁市中考数学全真模拟模拟题附参考答案详解【达标题】_第4页
2023年湖北省赤壁市中考数学全真模拟模拟题附参考答案详解【达标题】_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省赤壁市中考数学全真模拟模拟题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,在中,,,,以点为圆心,为半径的圆与所在直线的位置关系是(

)A.相交 B.相离 C.相切 D.无法判断2、已知x1,x2是一元二次方程2x2-3x=5的两个实数根,下列结论错误的是()A.2-3x1=5 B.(x1-x2)(2x1+2x2-3)=0C.x1+x2= D.x1x2=3、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是()A.0.560 B.0.580 C.0.600 D.0.6204、如图,一个油桶靠在直立的墙边,量得并且则这个油桶的底面半径是()A. B. C. D.5、已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积是()A. B.π﹣2 C.1+ D.1﹣二、多选题(5小题,每小题3分,共计15分)1、下列说法不正确的是()A.相切两圆的连心线经过切点 B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦 D.相等的圆心角所对的弦相等2、两个关于的一元二次方程和,其中,,是常数,且.如果是方程的一个根,那么下列各数中,一定是方程的根的是()A. B. C.2 D.-23、如图,是的直径,,交于点,交于点,是的中点,连接.则下列结论正确的是(

)A. B. C. D.是的切线4、下列关于圆的叙述正确的有()A.对角互补的四边形是圆内接四边形B.圆的切线垂直于圆的半径C.正多边形中心角的度数等于这个正多边形一个外角的度数D.过圆外一点所画的圆的两条切线长相等5、下列说法中,不正确的是(

)A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、在平面直角坐标系中,点关于原点对称的点的坐标是______.2、如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=10,AE=1,则弦CD的长是_____.3、一个不透明的袋子中放有3个红球和5个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率为_____.4、现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字1,2,3;B袋中的三个小球上分别标记数字2,3,4.这六个小球除标记的数字外,其余完全相同.将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,则摸出的这两个小球标记的数字之和为5的概率为______.5、小明和小强玩“石头、剪刀、布”游戏,按照“石头胜剪刀,剪刀胜布,布胜石头,相同算平局”的规则,两人随机出手一次,平局的概率为______.四、简答题(2小题,每小题10分,共计20分)1、已知有三条长度分别为2cm、4cm、8cm的线段,请再添一条线段.使这四条线段成比例,求所添线段的长度.2、如图,直角三角形中,,为中点,将绕点旋转得到.一动点从出发,以每秒1的速度沿的路线匀速运动,过点作直线,使.(1)当点运动2秒时,另一动点也从出发沿的路线运动,且在上以每秒1的速度匀速运动,在上以每秒2的速度匀速运动,过作直线使,设点的运动时间为秒,直线与截四边形所得图形的面积为,求关于的函数关系式,并求出的最大值.(2)当点开始运动的同时,另一动点从处出发沿的路线运动,且在上以每秒的速度匀速运动,在上以每秒2的速度匀度运动,是否存在这样的,使为等腰三角形?若存在,直接写出点运动的时间的值,若不存在请说明理由.五、解答题(4小题,每小题10分,共计40分)1、如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.(1)求∠ABD的度数;(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;(3)在(2)的条件下,求的长.2、如图,是由一些大小相同的小正方体组合成的简单几同体,请在下面方格纸中分别画出从它的左面和上面看到的形状图.3、如图,矩形ABCD中,AB=6cm,BC=12cm..点M从点A开始沿AB边向点B以1cm/秒的速度向B点移动,点N从点B开始沿BC边以2cm/秒的速度向点C移动.若M,N分别从A,B点同时出发,设移动时间为t(0<t<6),△DMN的面积为S.(1)求S关于t的函数关系式,并求出S的最小值;(2)当△DMN为直角三角形时,求△DMN的面积.4、在所给的的正方形网格中,按下列要求操作:(单位正方形的边长为1)(1)请在第二象限内的格点上找一点,使是以为底的等腰三角形,且腰长是无理数,求点的坐标;(2)画出以点为中心,旋转180°后的,并求的面积.-参考答案-一、单选题1、A【解析】【分析】过点C作CD⊥AB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解.【详解】解:过点C作CD⊥AB于点D,如图所示:∵,,,∴,根据等积法可得,∴,∵以点为圆心,为半径的圆,∴该圆的半径为,∵,∴圆与AB所在的直线的位置关系为相交,故选A.【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键.2、D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】解:∵x1、x2是一元二次方程2x2-3x=5的两个实数根,∴,故A正确,不符合题意;这里a=2,b=-3,c=-5,∴,,∵,∴,∴,故B、C正确,不符合题意,D错误,符合题意.故选:D.【考点】本题考查了一元二次方程根的意义,根与系数的关系等,熟练掌握根与系数的关系,,是解题的关键.3、C【分析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:∵由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,∴这名球员在罚球线上投篮一次,投中的概率为0.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.4、C【解析】【分析】根据切线的性质,连接过切点的半径,构造正方形求解即可.【详解】如图所示:设油桶所在的圆心为O,连接OA,OC,∵AB、BC与⊙O相切于点A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四边形OABC是正方形,∴OA=AB=BC=OC=0.8m,故选:C.【考点】考查了切线的性质和正方形的判定、性质,解题关键是理解和掌握切线的性质.5、B【解析】【分析】如图,标注顶点,连接AB,由图形的对称性可得阴影部分面积=S扇形AOB-S△ABO,从而可得答案.【详解】解:标注顶点,连接AB,由对称性可得:阴影部分面积=S扇形AOB-S△ABO=.故选:B.【考点】本题考查的是阴影部分的面积的计算,扇形面积的计算,掌握“图形的对称性”是解本题的关键.二、多选题1、BCD【解析】【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.(1)等弧指的是在同圆或等圆中,能够完全重合的弧.长度相等的两条弧,不一定能够完全重合;(2)此弦不能是直径;(3)相等的圆心角所对的弦相等指的是在同圆或等圆中.【详解】解:A、根据圆的轴对称性可知此命题正确,不符合题意;B、等弧指的是在同圆或等圆中,能够完全重合的弧.而此命题没有强调在同圆或等圆中,所以长度相等的两条弧,不一定能够完全重合,此命题错误,符合题意;B、此弦不能是直径,命题错误,符合题意;C、相等的圆心角指的是在同圆或等圆中,此命题错误,符合题意;故选:BCD.【考点】本题考查的是两圆的位置关系、圆周角定理以及垂径定理,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.2、AD【解析】【分析】利用方程根的定义去验证判断即可.【详解】∵,,∴,∴,,∴,,∵是方程的一个根,∴是方程的一个根,∴是方程的一个根,即时方程的一个根.∵是方程的一个根,∴,当x=时,,∴是方程的根.故选:A,D.【考点】本题考查了一元二次方程根的定义即使得方程两边相等的未知数的值,正确理解定义是解题的关键.3、BCD【解析】【分析】首先由是的直径,得出,推出,根据是的中点,得出是的中位线,得到,,再由,推出是的中位线,得,即是的切线,最后由假设推出不正确.【详解】解:连接,.是的直径,(直径所对的圆周角是直角),;而在中,,是边上的中线,选项符合题意);是的直径,,,,,,选项符合题意),是的中位线,即:,是的中点,是的中位线,,.是的切线选项符合题意);只有当是等腰直角三角形时,,故选项错误,不符合题意,故选:BCD.【考点】本题考查的知识点是切线的判定与性质、等腰三角形的性质及圆周角定理,解题的关键是运用等腰三角形性质及圆周角定理及切线性质作答.4、ACD【解析】【分析】根据圆内接四边形性质直接可判断A选项正确;利用切线的性质可判断B选项错误;根据正多边形中心角的定义和多边形外角和可对判断C选项正确;根据切线长定理可判断D选项正确.【详解】A.由圆内接四边形定义得:对角互补的四边形是圆内接四边形,A选项正确;B.圆的切线垂直于过切点的半径,B选项错误;C.正多边形中心角的度数等于这个正多边形一个外角的度数,都等于,C选项正确;D.过圆外一点引的圆的两条切线,则切线长相等,D选项正确.故选:ACD.【考点】本题考查了正多边形与圆、切线的性质和确定圆的条件,解题关键是熟练掌握有关的概念.5、ABC【解析】【分析】根据垂径定理的推论,即如果一条直线满足:①垂直于弦,②平分弦,③过圆心,④平分优弧,⑤平分劣弧中的两个条件,即可推论出其余三个,逐一进行判断即可.【详解】解:A、由于直径也是弦,所以平分一条直径的弦不一定垂直这条直径,选项说法错误,符合题意;B、平分一条弧的直线不一定垂直于这条弧,应该是:过圆心,且平分一条弧的直线垂直于这条弧所对的弦,选项说法错误,符合题意;C、弦的垂线不一定经过这条弦所在的圆心,应该是:弦的垂直平分线必经过这条弦所在的圆心,选项说法错误,符合题意;D、在一个圆内,平分一条弧和它所对弦的直线必经过这个圆的圆心,选项说法正确,不符合题意;故选ABC.【考点】本题考查了垂径定理,解题的关键是掌握垂径定理及其推论.三、填空题1、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.2、6【解析】【分析】连接OC,根据勾股定理求出CE,根据垂径定理计算即可.【详解】连接OC,∵AB是⊙O的直径,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案为6.【考点】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.3、【分析】让红球的个数除以球的总数即为摸到红球的概率.【详解】解:∵红球的个数为3个,球的总数为3+5=8(个),∴摸到红球的概率为,故答案为:.【点睛】本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.4、【分析】先列表,再利用表格信息得到所有的等可能的结果数与符合条件的结果数,再利用概率公式进行计算即可.【详解】解:列表如下:12321+2=32+2=42+3=533+1=43+2=53+3=644+1=54+2=64+3=7可得:所有的等可能的结果数有9种,而和为5的结果数有3种,摸出的这两个小球标记的数字之和为5的概率为:故答案为:【点睛】本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“列表或画树状图的方法”是解本题的关键.5、【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两人平局的情况,再利用概率公式即可求得答案.【详解】解:小明和小强玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小强平局的概率为:,故答案为:.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.四、简答题1、1或4或16.【解析】【分析】根据成比例线段的性质求解即可.【详解】解:设添加的线段长度为x,当时,解得:;当时,解得:;当时,解得:.∴所添线段的长度为1或4或16.【考点】此题考查了线段成比例,解题的关键是熟练掌握线段成比例性质并分类讨论.2、(1),S的最大值为;(2)存在,m的值为或或或.【解析】【分析】(1)分、和三种情况分别表示出有关线段求得两个变量之间的函数关系即可.(2)分两种情形:①如图中,由题意点在上运动的时间与点在上运动的时间相等,即.当时,当时,当时,分别构建方程求解即可.②如图中,作于.首先证明,根据构建方程即可解决问题.【详解】解:(1)如图中,当时,点与点都在上运动,,,,,,,,,,.此时两平行线截平行四边形的面积为.如图中,当时,点在上运动,点仍在上运动.则,,,,,,,而,故此时两平行线截平行四边形的面积为:,如图中,当时,点和点都在上运动.则,,,.此时两平行线截平行四边形的面积为.故关于的函数关系式为,当时,S随t增大而增大,当时,S随t增大而增大,当时,S随t增大而减小,∴当t=8时,S最大,代入可得S=;(2)如图中,由题意点在上运动的时间与点在上运动的时间相等,.当时,,则有,解得,当时,则有,解得,当时,,则有,解得.如图中,作于.在Rt△CHR中,,,,,,,四边形是平行四边形,,四边形是矩形,,当时,则有,解得,综上所述,满足条件的m的值为或或或.【考点】本题属于四边形综合题,考查了平行四边形的性质,多边形的面积,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.五、解答题1、(1);(2);(3)【分析】(1)如图,过作垂足分别为连接证明四边形为正方形,可得证明可得答案;(2)先求解再结合(1)的结论可得答案;(3)如图,连接先求解再证明再求解可得再利用弧长公式计算即可.【详解】解:(1)如图,过作垂足分别为连接四边形为矩形,由勾股定理可得:而四边形为正方形,而(2)如图,过作垂足分别为由(1)得:四边形为正方形,OA=2,∠OAB=15°,(3)如图,连接【点睛】本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.2、图见解析.【分析】根据左视图和俯视图的画法即可得.【详解】解:画图如下:【点睛】本题考查了左视图和俯视图,熟练掌握左视图(是指从左面观察物体所得到的图形)和俯视图(是指从上面观察物体所得到的图形)的画法是解题关键.3、(1)27(2)【解析】【分析】(1)根据t秒时,M、N两点的运动路程,分别表示出AM、BM、BN、CN的长度,由S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN进行列式即可得到S关于t的函数关系式,通过配方即可求得最小值;(2)当△DMN为直角三角形时,由∠MDN<9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论