2023江苏省张家港市中考数学每日一练试卷【能力提升】附答案详解_第1页
2023江苏省张家港市中考数学每日一练试卷【能力提升】附答案详解_第2页
2023江苏省张家港市中考数学每日一练试卷【能力提升】附答案详解_第3页
2023江苏省张家港市中考数学每日一练试卷【能力提升】附答案详解_第4页
2023江苏省张家港市中考数学每日一练试卷【能力提升】附答案详解_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省张家港市中考数学每日一练试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()A.2个 B.3个 C.4个 D.5个2、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接.下列结论一定正确的是(

)A. B. C. D.3、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为()A.8 B. C. D.4、如图,是△ABC的外接圆,已知,则的大小为()A.55° B.60° C.65° D.75°5、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是()A.AM=BM B.CM=DM C. D.二、多选题(5小题,每小题3分,共计15分)1、如图,是的直径,,交于点,交于点,是的中点,连接.则下列结论正确的是(

)A. B. C. D.是的切线2、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论正确的有(

)A.A、B关于x轴对称; B.A、B关于y轴对称;C.A、B关于原点对称; D.若A、B之间的距离为43、古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B;②以点B为圆心,BO为半径作圆弧分别交⊙O于C,D两点;③连接CO,DO并延长分别交⊙O于点E,F;④顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE.连接AD,EF,交于点G,则下列结论正确的是.A.△AOE的内心与外心都是点G B.∠FGA=∠FOAC.点G是线段EF的三等分点 D.EF=AF4、已知抛物线(,,是常数,)经过点,,当时,与其对应的函数值.下列结论正确的是(

)A. B.C. D.关于的方程有两个不等的实数根5、如图,是半圆的直径,半径于点,为半圆上一点,,与交于点,连接,,给出以下四个结论,其中正确的是(

)A.平分 B. C. D.第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,在一块长为22m,宽为14m的矩形空地内修建三条宽度相等的小路(阴影部分),其余部分种植花草.若花草的种植面积为240m2,则小路的宽为________m.2、如图,点A,B,C在⊙O上,四边形OABC是平行四边形,若对角线AC=2,则的长为_____.3、在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_____.4、如图,是等边三角形,点D为BC边上一点,,以点D为顶点作正方形DEFG,且,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为________.5、一个盒子中装有标号为,,,的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于的概率为______.四、简答题(2小题,每小题10分,共计20分)1、已知二次函数().(1)求二次函数图象的对称轴;(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;(3)在(2)的条件下,对直线下方二次函数图象上的一点,若,求点的坐标.2、在矩形中,于点,点是边上一点.(1)若平分,交于点,PF⊥BD,如图(1),证明四边形是菱形;(2)若,如图(2),求证:.五、解答题(4小题,每小题10分,共计40分)1、如图1,在⊙O中,AC=BD,且AC⊥BD,垂足为点E.(1)求∠ABD的度数;(2)图2,连接OA,当OA=2,∠OAB=15°,求BE的长度;(3)在(2)的条件下,求的长.2、小明和小丽先后从A地出发同一直道去B地,设小丽出发第时,小丽、小明离B地的距离分别为、,与x之间的数表达式,与x之间的函数表达式是.(1)小丽出发时,小明离A地的距离为.(2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?3、如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.4、某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年5月份,每天的房间空闲数y(间)与定价x(元/间)之间满足y=x﹣42(x≥168).若宾馆每天的日常运营成本为4000元,有客人入住的房间,宾馆每天每间另外还需支出36元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠.(1)求入住房间z(间)与定价x(元/间)之间关系式;(2)应将房间定价确定为多少元时,获得利润最大?求出最大利润?-参考答案-一、单选题1、A【分析】根据轴对称图形与中心对称图形的概念进行判断.【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.2、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB判断选项B不一定正确即可.【详解】解:∵绕点顺时针旋转得到,∴AC=CD,BC=EC,∠ACD=∠BCE,∴∠A=∠CDA=;∠EBC=∠BEC=,∴选项A、C不一定正确,∴∠A=∠EBC,∴选项D正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB不一定等于,∴选项B不一定正确;故选D.【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.3、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.【详解】解:如图所示,连接CP,∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故选C.【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.4、C【分析】由OA=OB,,求出∠AOB=130°,根据圆周角定理求出的度数.【详解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故选:C.【点睛】此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.5、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦AB⊥CD,CD过圆心O,∴AM=BM,,,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.二、多选题1、BCD【解析】【分析】首先由是的直径,得出,推出,根据是的中点,得出是的中位线,得到,,再由,推出是的中位线,得,即是的切线,最后由假设推出不正确.【详解】解:连接,.是的直径,(直径所对的圆周角是直角),;而在中,,是边上的中线,选项符合题意);是的直径,,,,,,选项符合题意),是的中位线,即:,是的中点,是的中位线,,.是的切线选项符合题意);只有当是等腰直角三角形时,,故选项错误,不符合题意,故选:BCD.【考点】本题考查的知识点是切线的判定与性质、等腰三角形的性质及圆周角定理,解题的关键是运用等腰三角形性质及圆周角定理及切线性质作答.2、BD【解析】【分析】根据点坐标关于原点对称、轴对称的特点,求出对应点坐标即可.【详解】点A(-2,3)关于x轴对称的点为(-2,-3),故A错误点A(-2,3)关于y轴对称的点为(2,3),故B正确点A(-2,3)关于原点对称的点为(2,-3),故C错误点A、点B的纵坐标相同,故A、B之间的距离为,故D正确故选BD【考点】本题考查了点坐标关于x,y轴对称,关于原点中心对称的特点,以及两点间距离公式,熟悉对应知识点是解决本题的关键.3、ABC【解析】【分析】证明△AOE是等边三角形,EF⊥OA,AD⊥OE,可判断A;.证明∠AGF=∠AOF=60°,可判断B;证明FG=2GE,可判断C;证明EF=AF,可判断D.【详解】解:如图,在正六边形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等边三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四边形AEOF,四边形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的内心与外心都是点G,故A正确,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正确,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴点G是线段EF的三等分点,故C正确,∵AF=AE,∠FAE=120°,∴EF=AF,故D错误,故答案为:ABC.【考点】本题考查作图-复杂作图,等边三角形的判定和性质,菱形的判定和性质,三角形的内心,外心等知识,解题的关键是证明四边形AEOF,四边形AODE都是菱形.4、BCD【解析】【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可.【详解】∵抛物线(是常数,)经过点(-1,-1),,当时,与其对应的函数值,∴c=1>0,a-b+c=-1,4a-2b+c>1,∴a-b=-2,2a-b>0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,故A错误;∵b=a+2,a>2,c=1,,故B正确;∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,即,故C正确;∵,∴△==>0,∴有两个不等的实数根,故D正确.故选:BCD.【考点】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.5、ABCD【解析】【分析】根据圆周角定理即可得出平分,证明全等即可得到,根据即可得到,即可得到;【详解】∵是半圆的直径,∴,又∵,∴,∵,∴,又∵,∴,∴,∴平分,故A正确;又∵,,∴,∴,故B正确;∵,∴,又∵∠CDE=∠COD=45°,∴,故C正确;∴,∴,故D正确;故选ABCD.【考点】本题主要考查了圆周角定理、直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质,准确计算是解题的关键.三、填空题1、2【解析】【分析】设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,根据花草的种植面积为240m2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,依题意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合题意,舍去).故答案为:2.【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.2、【分析】连接OB,交AC于点D,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC为菱形,根据菱形的性质可得:,,,根据等边三角形的判定得出为等边三角形,由此得出,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.【详解】解:如图所示,连接OB,交AC于点D,∵四边形OABC为平行四边形,,∴四边形OABC为菱形,∴,,,∵,∴为等边三角形,∴,∴,在中,设,则,∴,即,解得:或(舍去),∴的长为:,故答案为:.【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.3、4【解析】【分析】通过A、B两点得出对称轴,再根据对称轴公式算出b,由此可得出二次函数表达式,从而算出最小值即可推出n的最小值.【详解】∵A、B的纵坐标一样,∴A、B是对称的两点,∴对称轴,即,∴b=-4.∴抛物线解析式为:.∴抛物线顶点(2,-3).∴满足题意n的最小值为4,故答案为:4.【考点】本题考查二次函数对称轴的性质,顶点式的变形及抛物线的平移,关键在于根据对称轴的性质从题意中判断出对称轴.4、8【解析】【分析】过点A作于M,由已知得出,得出,由等边三角形的性质得出,,得出,在中,由勾股定理得出,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,,即此时AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出.【详解】过点A作于M,∵,∴,∴,∵是等边三角形,∴,∵,∴,∴,在中,,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,,即此时AE取最小值,在中,,∴在中,;故答案为8.【考点】本题考查了旋转的性质、正方形的性质、等边三角形的性质、勾股定理以及最小值问题;熟练掌握正方形的性质和等边三角形的性质是解题的关键.5、【分析】根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等可能的情况数,其中摸出的小球标号之和大于5的有4种,则摸出的小球标号之和大于5的概率为.故答案为:.【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.四、简答题1、(1)直线x=1;(2);;(3)或【解析】【分析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即可解决问题;(3)先求出直线MN的解析式,然后设点的坐标为,过点作轴的垂线交直线于点,得到PQ的长度,根据三角形的面积公式,即可求出答案.【详解】解:(1)∵二次函数(),∴该二次函数图象的对称轴是直线:;(2)∵该二次函数的图象开口向上,对称轴为直线,,∴当时,取得最大值,即,∴,得:,∴该二次函数的表达式为:,即点的坐标为.(3)设直线的解析式为,则,解得:,∴设直线的解析式为:,设点的坐标为,过点作轴的垂线交直线于点,如图则点的坐标是,∴,∴,解得:,,∴点的坐标是或.【考点】本题考查二次函数的性质,一次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、(1)见解析;(2)见解析【解析】【分析】(1)想办法证明AG=PF,AG∥PF,推出四边形AGFP是平行四边形,再证明PA=PF即可解决问题.(2)证明△AEP∽△DEC,可得,由此即可解决问题.【详解】解:(1)∵平分,,,∴,,又∵在中,,在中,∴,又∵,∴,∴,∴,∵,,∴AG∥PF,∴四边形是平行四边形,∴四边形AGFP是菱形;(2)∵,,∴,,∴,又∵,,∴,∴,∴,∴,又∵,∴.【考点】本题主要考查了角平分线的性质,菱形的判定,相似三角形的性质与判定,矩形的性质,解题的关键在于能够熟练掌握相关知识进行求解.五、解答题1、(1);(2);(3)【分析】(1)如图,过作垂足分别为连接证明四边形为正方形,可得证明可得答案;(2)先求解再结合(1)的结论可得答案;(3)如图,连接先求解再证明再求解可得再利用弧长公式计算即可.【详解】解:(1)如图,过作垂足分别为连接四边形为矩形,由勾股定理可得:而四边形为正方形,而(2)如图,过作垂足分别为由(1)得:四边形为正方形,OA=2,∠OAB=15°,(3)如图,连接【点睛】本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.2、(1)250;(2)当小丽出发第时,两人相距最近,最近距离是【解析】【分析】(1)由x=0时,根据-求得结果即可;(2)求出两人相距的函数表达式,求出最小值即可.【详解】解(1)当x=0时,=2250,=2000∴-=2250-2000=250(m)故答案为:250(2)设小丽出发第时,两人相距,则即其中因此,当时S有最小值,也就是说,当小丽出发第时,两人相距最近,最近距离是【考点】此题主要考查了二次函数的性质的应用,熟练掌握二次函数的性质是解答本题的关键.3、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、、、为顶点的四边形是平行四边形,,点坐标为,,.【解析】【分析】(1)将点,代入即可求解;(2)BC与对称轴的交点即为符合条件的点,据此可解;(3)过点作轴于点,交直线与点,当EF最大时面积的取得最大值,据此可解;(4)根据平行四边形对边平行且相等的性质可以得到存在点N使得以B,C,M,N为顶点的四边形是平行四边形.分三种情况讨论.【详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论