2023年四川省邛崃市中考数学考试历年机考真题集及参考答案详解(典型题)_第1页
2023年四川省邛崃市中考数学考试历年机考真题集及参考答案详解(典型题)_第2页
2023年四川省邛崃市中考数学考试历年机考真题集及参考答案详解(典型题)_第3页
2023年四川省邛崃市中考数学考试历年机考真题集及参考答案详解(典型题)_第4页
2023年四川省邛崃市中考数学考试历年机考真题集及参考答案详解(典型题)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省邛崃市中考数学考试历年机考真题集考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、二次函数的图象如图所示,对称轴是直线.下列结论:①;②;③;④(为实数).其中结论正确的个数为(

)A.1个 B.2个 C.3个 D.4个2、若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1 B.﹣2 C.﹣1 D.23、下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖C.想了解某市城镇居民人均年收入水平,宜采用抽样调查D.我区未来三天内肯定下雪4、如图,五边形是⊙O的内接正五边形,则的度数为(

)A. B. C. D.5、一元二次方程x2-3x+1=0的根的情况是(

).A.没有实数根 B.有两个相等的实数根C.只有一个实数根 D.有两个不相等的实数根二、多选题(5小题,每小题3分,共计15分)1、如图,的内切圆(圆心为点O)与各边分别相切于点D,E,F,连接.以点B为圆心,以适当长为半径作弧分别交于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线.下列说法正确的是(

)A.射线一定过点O B.点O是三条中线的交点C.若是等边三角形,则 D.点O不是三条边的垂直平分线的交点2、二次函数(,,为常数,)的部分图象如图所示,图象顶点的坐标为,与轴的一个交点在点和点之间,给出的四个结论中正确的有(

)A. B.C. D.时,方程有解3、古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B;②以点B为圆心,BO为半径作圆弧分别交⊙O于C,D两点;③连接CO,DO并延长分别交⊙O于点E,F;④顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE.连接AD,EF,交于点G,则下列结论正确的是.A.△AOE的内心与外心都是点G B.∠FGA=∠FOAC.点G是线段EF的三等分点 D.EF=AF4、两个关于的一元二次方程和,其中,,是常数,且.如果是方程的一个根,那么下列各数中,一定是方程的根的是()A. B. C.2 D.-25、下面一元二次方程的解法中,不正确的是(

)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x两边同除以x,得x=1第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、若二次函数的顶点在x轴上,则__________.2、如图,在矩形中,,,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90°得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:①当时,;②点E到边的距离为m;③直线一定经过点;④的最小值为.其中结论正确的是______.(填序号即可)3、圆锥的底面直径是80cm,母线长90cm.它的侧面展开图的圆心角和圆锥的全面积依次是______.4、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.5、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________.四、简答题(2小题,每小题10分,共计20分)1、新冠肺炎疫情期间,我国各地采取了多种方式进行预防.其中,某地运用无人机规劝居民回家.如图,无人机于空中A处测得某建筑顶部B处的仰角为,测得该建筑底部C处的俯角为.若无人机的飞行高度为,求该建筑的高度(结果取整数),参考数据:,,.2、如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB的高度.五、解答题(4小题,每小题10分,共计40分)1、已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都为正整数,求这个方程的根.2、如图,的直径cm,AM和BN是它的切线,DE与相切于点E,并与AM,BN分别相交于D,C两点.设,,求y关于x的函数解析式.3、综合与实践“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具——三分角器.图1是它的示意图,其中与半圆的直径在同一直线上,且的长度与半圆的半径相等;与垂直于点,足够长.使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆与另一边恰好相切,切点为,则,就把三等分了.为了说明这一方法的正确性,需要对其进行证明.独立思考:(1)如下给出了不完整的“已知”和“求证”,请补充完整.已知:如图2,点,,,在同一直线上,,垂足为点,________,切半圆于.求证:________________.探究解决:(2)请完成证明过程.应用实践:(3)若半圆的直径为,,求的长度.4、如图,⊙O的半径弦AB于点C,连结AO并延长交⊙O于点E,连结EC.已知,.(1)求⊙O半径的长;(2)求EC的长.-参考答案-一、单选题1、C【解析】【分析】①由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项①错误;②把代入中得,所以②正确;③由时对应的函数值,可得出,得到,由,,,得到,选项③正确;④由对称轴为直线,即时,有最小值,可得结论,即可得到④正确.【详解】解:①∵抛物线开口向上,∴,∵抛物线的对称轴在轴右侧,∴,∵抛物线与轴交于负半轴,∴,∴,①错误;②当时,,∴,∵,∴,把代入中得,所以②正确;③当时,,∴,∴,∵,,,∴,即,所以③正确;④∵抛物线的对称轴为直线,∴时,函数的最小值为,∴,即,所以④正确.故选C.【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右.常数项决定抛物线与轴交点:抛物线与轴交于.抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点.2、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【详解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选C.【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3、C【分析】根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】A.“打开电视,正在播放《新闻联播》”是随机事件,故该选项不正确,不符合题意;B.某次抽奖活动中奖的概率为,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;C.想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;D.我区未来三天内不一定下雪,故该选项不正确,不符合题意;故选C【点睛】本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键.4、D【解析】【分析】先根据正五边形的内角和求出每个内角,再根据等边对等角得出∠ABE=∠AEB,然后利用三角形内角和求出∠ABE=即可.【详解】解:∵五边形是⊙O的内接正五边形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故选:D.【考点】本题考查圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算,掌握圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算是解题关键.5、D【解析】【分析】根据一元二次方程判别式的性质分析,即可得到答案.【详解】∵∴x2-3x+1=0有两个不相等的实数根故选:D.【考点】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程判别式的性质,从而完成求解.二、多选题1、AC【解析】【分析】根据三角形内切圆的性质逐个判断可得出答案.【详解】A、以点B为圆心,以适当长为半径作弧分别交于G,H两点;分别以点G,H为圆心,以大于的长为半径作弧,两条弧交于点P;作射线,由此可得BP是角平分线,所以射线一定过点O,说法正确,选项符合题意;B、边DE、EF、DF分别是圆的弦长,所以点O是△DEF三条边的垂直平分线的交点,选项不符合题意;C、当是等边三角形时,可以证得D、F、E分别是边的中点,根据中位线概念可得,选项符合题意;D、边DE、EF、DF分别是圆的弦长,所以点O是△DEF三条边的垂直平分线的交点,选项不符合题意;故选:AC.【考点】本题考查了三角形内切圆的特点和性质,解题的关键是能与其它知识联系起来,加以证明选项的正确.2、BCD【解析】【分析】根据抛物线与轴有两个交点,可知,即可判断A选项;根据时,,即可判断B选项;根据对称轴,即可判断C选项;D.根据抛物线的顶点坐标为,函数有最大即可判定D.【详解】解:由图象可知,抛物线开口向下,对称轴在轴的右侧,与轴的交点在轴的负半轴,∵抛物线与轴有两个交点,∴,∴,即,故A错误;由图象可知,时,,∴,故B正确;∵抛物线的顶点坐标为,∴,,∵,∴,即,故C正确;∵抛物线的开口向下,顶点坐标为,∴(为任意实数),即时,方程有解.故D正确.故选BCD.【考点】本题主要考查了二次函数的性质、二次函数图像等知识点,掌握二次函数的性质与解析式的关系是解答本题的关键.3、ABC【解析】【分析】证明△AOE是等边三角形,EF⊥OA,AD⊥OE,可判断A;.证明∠AGF=∠AOF=60°,可判断B;证明FG=2GE,可判断C;证明EF=AF,可判断D.【详解】解:如图,在正六边形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等边三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四边形AEOF,四边形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的内心与外心都是点G,故A正确,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正确,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴点G是线段EF的三等分点,故C正确,∵AF=AE,∠FAE=120°,∴EF=AF,故D错误,故答案为:ABC.【考点】本题考查作图-复杂作图,等边三角形的判定和性质,菱形的判定和性质,三角形的内心,外心等知识,解题的关键是证明四边形AEOF,四边形AODE都是菱形.4、AD【解析】【分析】利用方程根的定义去验证判断即可.【详解】∵,,∴,∴,,∴,,∵是方程的一个根,∴是方程的一个根,∴是方程的一个根,即时方程的一个根.∵是方程的一个根,∴,当x=时,,∴是方程的根.故选:A,D.【考点】本题考查了一元二次方程根的定义即使得方程两边相等的未知数的值,正确理解定义是解题的关键.5、ACD【解析】【分析】各方程求出解,即可作出判断.【详解】解:A、方程整理得:x2-8x-5=0,这里a=1,b=-8,c=-5,∵△=64+20=84,∴,故选项A符合题意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故选项B不符合题意;C、方程整理得:x2+8x+4=0,解得:,故选项C符合题意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故选项D符合题意,故选:ACD.【考点】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.三、填空题1、-2或【解析】【分析】根据二次函数一般式的顶点坐标公式表示出顶点,再根据顶点在x轴上,建立等量关系求解即可.【详解】解:的顶点坐标为:∵顶点在x轴上∴解得:故答案为:或【考点】本题考查二次函数一般式的顶点坐标,掌握二次函数一般式的顶点坐标公式是解题关键.2、②③④【分析】①当在点的右边时,得出即可判断;②证明出即可判断;③根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判断;④当时,有最小值,计算即可.【详解】解:,为等腰直角三角形,,当在点的左边时,,当在点的右边时,,故①错误;过点作,在和中,根据旋转的性质得:,,,,,故②正确;由①中得知为等腰直角三角形,,也是等腰直角三角形,过点,不管P在上怎么运动,得到都是等腰直角三角形,,即直线一定经过点,故③正确;是等腰直角三角形,当时,有最小值,,为等腰直角三角形,,,由勾股定理:,,故④正确;故答案是:②③④.【点睛】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理.3、160°,5200【分析】由题意知,圆锥的展开图扇形的r半径为90cm,弧长l为.代入扇形弧长公式求解圆心角;代入扇形面积公式求出圆锥侧面积,然后加上底面面积即可求出全面积.【详解】解:圆锥的展开图扇形的r半径为90cm,弧长l为∵∴解得∵∴故答案为:160°,.【点睛】本题考查了扇形的圆心角与面积.解题的关键在于运用扇形的弧长与面积公式进行求解.难点在于求出公式中的未知量.4、8【分析】首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可.【详解】解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近,∴摸出红球的概率为0.2,由题意,,解得:,经检验,是原方程的解,且符合题意,故答案为:8.【点睛】本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键.5、【分析】连接OC交AB于点D,再连接OA.根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.【详解】解:如下图所示,连接OC交AB于点D,再连接OA.∵折叠后弧的中点与圆心重叠,∴,OD=CD.∴AD=BD.∵圆形纸片的半径为10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案为:.【点睛】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.四、简答题1、42m【解析】【分析】如图,过点A作,垂足为E.利用,求解即可.【详解】解:如图,过点A作,垂足为E.由题意可知,,,.在中,,∴.在中,,.∵,∴.答:该建筑的高度约为.【考点】本题考查了解斜三角形,通过作高化斜三角形为直角三角形,并准确求解是解题的关键.2、4m【解析】【分析】首先根据DO=OE=1m,可得∠DEB=45°,然后证明AB=BE,再证明△ABF∽△COF,可得,然后代入数值可得方程,解出方程即可得到答案.【详解】解:延长OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,,解得:x=4.经检验:x=4是原方程的解.答:围墙AB的高度是4m.【考点】此题主要考查了相似三角形的应用,解决问题的关键是求出AB=BE,根据相似三角形的判定方法证明△ABF∽△COF.五、解答题1、证明见祥解;.【解析】【分析】(1)先求出判别式,再配方变为即可;(2)用十字相乘法可以求出根的表达式,方程的两个实数根都为正整数,列不等式组,即可得出m的值.【详解】证明:∵是关于的一元二次方程,,∴此方程总有两个实数根.解:∵,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论