




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省福泉市中考数学题库试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、已知△ABC为等腰三角形,若BC=6,且AB,AC为方程x2﹣8x+m=0两根,则m的值等于()A.12 B.16 C.﹣12或﹣16 D.12或162、二次函数的顶点坐标为,图象如图所示,有下列四个结论:①;②;③④,其中结论正确的个数为(
)A.个 B.个 C.个 D.个3、一元二次方程(m+1)x2-2mx+m2-1=0有两个异号根,则m的取值范围是(
)A.m<1 B.m<1且m≠-1C.m>1 D.-1<m<14、若m,n是方程x2-x-2022=0的两个根,则代数式(m2-2m-2022)(-n2+2n+2022)的值为(
)A.2023 B.2022 C.2021 D.20205、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=25°,则∠OCD=(
).A.50° B.40° C.70° D.30°二、多选题(5小题,每小题3分,共计15分)1、若关于的一元二次方程的两个实数根分别是,且满足,则的值不可能为(
)A.或 B. C. D.不存在2、下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是(
)A. B. C. D.3、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象不可能是()A. B.C. D.4、下列说法正确的是(
)A.圆是轴对称图形,它有无数条对称轴B.圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等D.垂直于弦的直径平分这条弦,并且平分弦所对的弧5、下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行了旋转变换的是(
)组,进行轴对称变换的是(
).A. B. C. D.第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、不透明袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黄球的概率是_______.2、如图,I是△ABC的内心,∠B=60°,则∠AIC=_____.3、写出一个一元二次方程,使它有两个不相等的实数根______.4、若代数式有意义,则x的取值范围是_____.5、如图,在平面直角坐标系中,坐标原点为O,抛物线y=a(x﹣2)2+1(a>0)的顶点为A,过点A作y轴的平行线交抛物线于点B,连接AO、BO,则△AOB的面积为________.四、解答题(6小题,每小题10分,共计60分)1、阅读下面内容,并答题:我们知道,计算n边形的对角线条数公式为n(n-3).如果一个n边形共有20条对角线,那么可以得到方程n(n-3)=20.解得n=8或n=-5(舍去),∴这个n边形是八边形.根据以上内容,问:(1)若一个多边形共有9条对角线,求这个多边形的边数;(2)小明说:“我求得一个n边形共有10条对角线”,你认为小明同学的说法正确吗?为什么?2、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.3、已知抛物线过点.(1)求抛物线的解析式;(2)点A在直线上且在第一象限内,过A作轴于B,以为斜边在其左侧作等腰直角.①若A与Q重合,求C到抛物线对称轴的距离;②若C落在抛物线上,求C的坐标.4、水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20kg.(1)若以每千克能盈利17元的单价出售,求每天的总毛利润为多少元;(2)现市场要保证每天总毛利润为7500元,同时又要使顾客得到实惠,求每千克应涨价多少元;(3)现需按毛利润的10%缴纳各种税费,人工费每日按销售量每千克支出1.5元,水电房租费每日300元.若每天剩下的总纯利润要达到6000元,求每千克应涨价多少元.5、已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.6、受“新冠”疫情的影响,某销售商在网上销售A、B两种型号的“手写板”,获利颇丰.已知A型,B型手写板进价、售价和每日销量如表格所示:进价(元/个)售价(元/个)销量(个/日)A型600900200B型8001200400根据市场行情,该销售商对A手写板降价销售,同时对B手写板提高售价,此时发现A手写板每降低5就可多卖1,B手写板每提高5就少卖1,要保持每天销售总量不变,设其中A手写板每天多销售x,每天总获利的利润为y(1)求y、x间的函数关系式并写出x取值范围;(2)要使每天的利润不低于234000元,直接写出x的取值范围;(3)该销售商决定每销售一个B手写板,就捐a元给因“新冠疫情”影响的困难家庭,当时,每天的最大利润为229200元,求a的值.-参考答案-一、单选题1、D【解析】【分析】由△ABC为等腰三角形,BC=6,且AB,AC为方程x2﹣8x+m=0两根,可得两种情况:①BC=6=AB,把6代入方程得36﹣48+m=0②AB=AC,此时方程的判别式为0,分别求解即可.【详解】解:∵△ABC为等腰三角形,若BC=6,且AB,AC为方程x2﹣8x+m=0两根,则①BC=6=AB,把6代入方程得36﹣48+m=0,∴m=12;②AB=AC,此时方程的判别式为0,∴Δ=64﹣4m=0,∴m=16.故m的值等于12或16.故选:D.【考点】本题考查了一元二次方程的判别式和等腰三角形的性质,熟练掌握知识点是解题的关键.2、A【解析】【分析】根据二次函数的性质和已知条件,对每一项逐一进行判断即可.【详解】解:由图像可知a<0,c>0,∵对称轴在正半轴,∴>0,∴b>0,∴,故①正确;当x=2时,y>0,故,故③正确;函数解析式为:y=a(x-1)2+2=ax2-2ax+a+2假设成立,结合解析式则有a+2<,解得a<,故②,④正确;故选:A.【考点】本题考查了二次函数图象与系数的关系,结合图象,运用所学知识是解题关键.3、B【解析】【分析】设方程两根为x1,x2,根据一元二次方程的定义和根与系数的关系求解即可.【详解】解:设方程两根为x1,x2,根据题意得m+1≠0,,解得m<1且m≠-1,∵x1•x2<0,∴Δ>0,∴m的取值范围为m<1且m≠-1.故选:B.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程根与系数的关系.4、B【解析】【详解】解:∵m、n是方程x2-x-2022=0的两个根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【考点】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此题的关键.5、C【解析】【分析】根据圆周角定理求出∠DOB,根据等腰三角形性质求出∠OCD=∠ODC,根据三角形内角和定理求出即可.【详解】解:连接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故选:C.【考点】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目比较典型,难度适中.二、多选题1、ABD【解析】【分析】利用可得,从而得到,解出k结合根的判别式即可求解.【详解】解:∵于的一元二次方程的两个实数根分别是,,∴,∵,∴,即,解得:,当时,,∴此时方程无实数根,不合题意,舍去,当时,,∴此时方程有两个不相等实数根,∴的值为.故选:ABD.【考点】本题主要考查了一元二次方程根与系数的关系,熟练掌握若一元二次方程的两个实数根分别是,,则是解题的关键.2、AB【解析】【分析】根据旋转的性质对题中图形进行分析即可.【详解】解:A、旋转任意角度都与原图形重合,故符合题意;B、旋转最小的度数是120度与原图形重合,故符合题意;C、旋转最小的度数是72度(72度的整倍数都可以)与原图形重合,则旋转120度不能与原图形重合,故不符合题意;D、旋转最小的度数是90度(90度的整倍数都可以)与原图形重合,则旋转120度不能与原图形重合,故不符合题意.故选AB.【考点】本题主要考查了图形的旋转,理解旋转的定义是解题的关键.3、ABD【解析】【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【详解】A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线来说,对称轴x=<0,应在y轴的左侧,图形错误,故符合题意.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线来说,图象应开口向下,故不合题意,图形错误,故符合题意.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线来说,图象开口向下,对称轴x=位于y轴的右侧,图形正确,故不符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线来说,图象开口向下,a<0,故不合题意,图形错误,故符合题意.故选ABD.【考点】主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.4、ABD【解析】【分析】根据圆的相关知识和垂径定理进行分析即可.【详解】解:A.圆是轴对称图形,它有无数条对称轴,正确;B.圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边,正确;C.弦长相等,则弦所对的弦心距也相等,不正确,只有在同圆或等圆中,弦长相等,则弦所对的弦心距也相等;D.垂直于弦的直径平分这条弦,并且平分弦所对的弧,正确.故选:ABD.【考点】本题考查了学生对圆的基本概念和垂径定理的理解,属于基础题.5、AC【解析】【分析】旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变;在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴.据此即可解答.【详解】由旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变,分析可得,进行旋转变换的是A;左边图形能轴对称变换得到右边图形,则进行轴对称变换的是C;根据平移是将一个图形从一个位置变换到另一个位置,各对应点间的连线平行,分析可得,D是平移变化;故答案为:A;C.【考点】本题考查了几何变换的定义,注意结合几何变换的定义,分析图形的位置的关系,特别是对应点之间的关系.三、填空题1、【解析】【分析】用黄球的个数除以总球的个数即可得出取出黄球的概率.【详解】解:∵不透明的袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,∴从袋子中随机取出1个球,则它是黄球的概率为;故答案为:.【考点】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.2、120°.【解析】【分析】根据三角形的内切圆的圆心是三角形三个角的平分线的交点即可求解.【详解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的内切圆的圆心是三角形三个角的平分线的交点,∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案为120°.【考点】此题主要考查利用三角形的内切圆的圆心是三角形三个角的平分线的交点性质进行角度求解,熟练掌握,即可解题.3、x2+x﹣1=0(答案不唯一)【解析】【分析】这是一道开放自主题,只要写出的方程的Δ>0就可以了.【详解】解:比如a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=1+4=5>0,∴方程为x2+x﹣1=0.故答案为:x2+x﹣1=0(答案不唯一)【考点】本题考查了一元二次方程根的判别式,掌握“根的判别式大于0,方程有两个不相等的实数根”是解题的关键.4、﹣3≤x≤且x≠.【解析】【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【详解】解:若代数式有意义,必有,解①得解②移项得两边平方得整理得解得③∴解集为﹣3≤x≤且x≠.故答案为:﹣3≤x≤且x≠.【考点】本题考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一个非负数.注意:二次根式中的被开方数必须是非负数,否则二次根式无意义;当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.5、【解析】【分析】先求得顶点A的坐标,然后根据题意得出B的横坐标,把横坐标代入抛物线,得出B点坐标,从而求得A、B间的距离,最后计算面积即可.【详解】设AB交x轴于C∵抛物线线y=a(x﹣2)2+1(a>0)的顶点为A,∴A(2,1),∵过点A作y轴的平行线交抛物线于点B,∴B的横坐标为2,OC=2把x=2代入得y=-3,∴B(2,-3),∴AB=1+3=4,.故答案为:4.【考点】本题考查了二次函数图象上点的坐标特征,求得A、B的坐标是解题的关键.四、解答题1、(1)6(2)错误,理由见解析【解析】【分析】(1)利用题中给出的对角线条数公式即可求解;(2)利用题中给出的对角线条数公式列出一元二次方程,求解方程的根,根据方程是否有正整数解来判断即可.(1)设这个多边形的边数是n,则n(n-3)=9,解得n=6或n=-3(舍去).∴这个多边形的边数是6;(2)小明同学的说法是不正确的,理由如下:由题可得n(n-3)=10,解得n=,∴符合方程的正整数n不存在,∴n边形不可能有10条对角线,故小明的说法不正确.【考点】本题主要考查了一元二次方程的应用,通过方程是否有正整数解来判断是否存在有10条对角线的多边形是解答本题的关键.2、(1);(2)【解析】【分析】(1)根据题意先分类讨论,当售价超过50元但不超过80元时,上涨的价格是元,就少卖件,用原来的210件去减得到销售量;当售价超过80元,超过80的部分是元,就少卖件,用原来的210件先减去售价从50涨到80之间少卖的30件再减去得到最终的销售量.(2)根据利润=(售价-成本)销量,现在的单件利润是元,再去乘以(1)中两种情况下的销售量,得到销售利润关于售价的式子.【详解】(1)当时,,即.当时,,即,则(2)由利润=(售价-成本)×销售量可以列出函数关系式为【考点】本题考查二次函数实际应用中的利润问题,关键在于根据题意列出销量与售价之间的一次函数关系式以及熟悉求利润的公式,需要注意本题要根据售价的不同范围进行分类讨论,结果要写成分段函数的形式,还要标上的取值范围.3、(1);(2)①1;②点C的坐标是【解析】【分析】(1)将两点分别代入,得,解方程组即可;(2)①根据AB=4,斜边上的高为2,Q的横坐标为1,计算点C的横坐标为-1,即到y轴的距离为1;②根据直线PQ的解析式,设点A(m,-2m+6),三角形ABC是等腰直角三角形,用含有m的代数式表示点C的坐标,代入抛物线解析式求解即可.【详解】解:(1)将两点分别代入,得解得.所以抛物线的解析式是.(2)①如图2,抛物线的对称轴是y轴,当点A与点重合时,,作于H.∵是等腰直角三角形,∴和也是等腰直角三角形,∴,∴点C到抛物线的对称轴的距离等于1.②如图3,设直线PQ的解析式为y=kx+b,由,得解得∴直线的解析式为,设,∴,所以.所以.将点代入,得.整理,得.因式分解,得.解得,或(与点P重合,舍去).当时,.所以点C的坐标是.【点评】本题考查了抛物线解析式的确定,一次函数解析式的确定,等腰直角三角形的性质,一元二次方程的解法,熟练掌握待定系数法,灵活用解析式表示点的坐标,熟练解一元二次方程是解题的关键.4、(1)每天的总毛利润为7820元;(2)每千克应涨价5元;(3)每千克应涨价15元或元【解析】【分析】(1)设每千克盈利x元,可售y千克,由此求得关于y与x的函数解析式,进一步代入求得答案即可;(2)利用每千克的盈利×销售的千克数=总利润,列出方程解答即可;(3)利用每天总毛利润﹣税费﹣人工费﹣水电房租费=每天总纯利润,列出方程解答即可.(1)解:设每千克盈利x元,可售y千克,设y=kx+b,则当x=10时,y=600,当x=11时,y=600﹣20=580,由题意得,,解得.所以销量y与盈利x元之间的关系为y=﹣20x+800,当x=17时,y=460,则每天的毛利润为17×460=7820元;(2)解:设每千克盈利x元,由(1)可得销量为(﹣20x+800)千克,由题意得x(﹣20x+800)=7500,解得:x1=25,x2=15,∵要使得顾客得到实惠,应选x=15,∴每千克应涨价15﹣10=5元;(3)解:设每千克盈利x元,由题意得x(﹣20x+800)﹣10%x(﹣20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年加氢工艺操作证理论考试笔试试题附答案
- 2025年电工证考试试题及参考答案
- 晋中市人民医院整形手术术后管理考核
- 2025年承包商入厂安全培训考试试题含答案(黄金题型)
- 2025年初级养老护理员职业考试题库(附答案)
- 黑河市中医院青春期发育异常诊疗考核
- 2025年医疗三基三严考试题库含答案之急救病例
- 2025年音乐艺术概论试题及答案
- 2025年基孔肯雅热防控技术指南(版)解读
- 2025年护理伦理试题及答案
- 高职院校校企合作实习管理方案
- 主题活动四 健康友谊助成长说课稿-2025-2026学年小学综合实践活动苏少版新疆专用2024三年级上册-苏少版(新疆专用2024)
- 买卖合同司法解释解读
- 2025贵州民航产业集团有限公司招聘120人考试参考题库及答案解析
- 北京市东城区2024-2025学年八年级上学期期末考试英语试题
- 光伏电站安全培训课件
- 老年人情绪管理课件
- 2024统编版二年级语文上册全册生字字帖(田字格)
- 跨境游戏监管挑战-洞察及研究
- 洁牙岗考试题及答案大全
- 陕煤企业文化考试题库及答案
评论
0/150
提交评论