




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
深圳观澜文成学校人教版七年级下学期期末压轴难题数学试题一、选择题1.如图,A点在直线DE上,在∠BAD,∠BAE,∠BAC,∠CAE,∠C中,∠B的同旁内角有()A.2个 B.3个 C.4个 D.5个2.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是()A. B. C. D.3.在平面直角坐标系中,点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列命题是假命题的是()A.三角形三个内角的和等于B.对顶角相等C.在同一平面内,垂直于同一条直线的两条直线互相平行D.两条直线被第三条直线所截,同位角相等5.如图,,点为上方一点,分别为的角平分线,若,则的度数为()A. B. C. D.6.下列结论正确的是()A.64的立方根是±4B.﹣没有立方根C.立方根等于本身的数是0D.=﹣37.将45°的直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=31°,则∠2的度数为()A.10° B.14° C.20° D.31°8.如图,在平面直角坐标系中,一动点从原点O出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到,,,,…那么点的坐标为()A. B. C. D.二、填空题9.若=0,则=________.10.点关于轴的对称点的坐标为______.11.如图,AD∥BC,BD为∠ABC的角平分线,DE、DF分别是∠ADB和∠ADC的角平分线,且∠BDF=α,则∠A与∠C的等量关系是________________(等式中含有α)12.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有_______个.13.如图,将一张长方形纸条折成如图的形状,若,则的度数为____.14.[x)表示小于x的最大整数,如[2.3)=2,[4)=5,则下列判断:①[)=;②[x)x有最大值是0;③[x)x有最小值是1;④x[x)x,其中正确的是__________(填编号).15.,则在第_____象限.16.如图所示,动点在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点,第二次接着运动到点,第三次接着运动到点,…,按这样的运动规律,经过次运动后,动点的坐标是________.三、解答题17.(1)已知,求x的值;(2)计算:.18.求下列各式中的x值:(1)25x2-64=0(2)x3-3=19.如图.已知∠1=∠2,∠C=∠D,求证:∠A=∠F.(1)请把下面证明过程中序号对应的空白内容补充完整.证明:∴∠1=∠2(已知)又∵∠1=∠DMN()∵∠2=∠DMN(等量代换)∴DB∥EC()∴∠DBC+∠C=180°().∵∠C=∠D(已知),∴∠DBC+()=180°(等量代换)∴DF∥AC()∴∠A=∠F()(2)在(1)的基础上,小明进一步探究得到∠DBC=∠DEC,请帮他写出推理过程.20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹):(I)在方格纸内将三角形经过一次平移后得到三角形,图中标出了点的对应点,画出三角形;(2)过点画线段使且;(3)图中与的关系是______;(4)点在线段上,,点是直线上一动点线段的最小值为______.21.已知的整数部分为a,小数部分为b.(1)求a,b的值:(2)若c是一个无理数,且乘积bc是一个有理数,你能写出数c的值吗?并说明理由.二十二、解答题22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.二十三、解答题23.如图①,将一张长方形纸片沿对折,使落在的位置;(1)若的度数为,试求的度数(用含的代数式表示);(2)如图②,再将纸片沿对折,使得落在的位置.①若,的度数为,试求的度数(用含的代数式表示);②若,的度数比的度数大,试计算的度数.24.如图1,E点在上,..(1)求证:(2)如图2,平分,与的平分线交于H点,若比大,求的度数.(3)保持(2)中所求的的度数不变,如图3,平分平分,作,则的度数是否改变?若不变,请直接写出答案;若改变,请说明理由.25.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在中,,是的角平分线,求证:是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在中,若,,,则是“准互余三角形”;②若是“准互余三角形”,,,则;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数.26.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.(1)若点E的位置如图1所示.①若∠ABE=60°,∠CDE=80°,则∠F=°;②探究∠F与∠BED的数量关系并证明你的结论;(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是.(3)若点E的位置如图3所示,∠CDE为锐角,且,设∠F=α,则α的取值范围为.【参考答案】一、选择题1.B解析:B【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解:∠B的同旁内角有∠BAE,∠BAC和∠C,共有3个,故选:B.【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A.可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B.可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A.可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B.可以经过平移变换得到,故本选项符合题意;C.可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D.可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B.【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.B【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点P的横坐标是负数,纵坐标是正数,∴点P(-3,1)在第二象限,故选:B.【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).4.D【分析】根据三角形内角和定理,对顶角的性质,平行线的判定和性质逐一判断即可.【详解】解:A、三角形三个内角的和等于180°,故此说法正确,是真命题;B、对顶角相等,故此说法正确,是真命题;C、在同一平面内,垂直于同一条直线的两条直线互相平行两条,故此说法正确,是真命题;D、两条平行直线被第三条直线所截,同位角相等,故此说法错误,是假命题.故选D.【点睛】本题主要考查了命题的真假,解题的关键在于能够熟练掌握相关知识进行判断求解.5.A【分析】过G作GMAB,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC=∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案.【详解】解:过G作GMAB,∴∠2=∠5,∵ABCD,∴MGCD,∴∠6=∠4,∴∠FGC=∠5+∠6=∠2+∠4,∵FG、CG分别为∠EFG,∠ECD的角平分线,∴∠1=∠2=∠EFG,∠3=∠4=∠ECD,∵∠E+2∠G=210°,∴∠E+∠1+∠2+∠ECD=210°,∵ABCD,∴∠ENB=∠ECD,∴∠E+∠1+∠2+∠ENB=210°,∵∠1=∠E+∠ENB,∴∠1+∠1+∠2=210°,∴3∠1=210°,∴∠1=70°,∴∠EFG=2×70°=140°.故选:A.【点睛】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等.6.D【分析】利用立方根的定义及求法分别判断后即可确定正确的选项.【详解】解:A、64的立方根是4,原说法错误,故这个选项不符合题意;B、﹣的立方根为﹣,原说法错误,故这个选项不符合题意;C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D、=﹣3,原说法正确,故这个选项符合题意;故选:D.【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.7.B【分析】根据平行线的性质,即可得出∠1=∠ADC=31°,再根据等腰直角三角形ADE中,∠ADE=45°,即可得到答案.【详解】解:∵AB∥CD,∴∠1=∠ADC=30°,又∵直角三角形ADE中,∠ADE=45°,∴∠1=45°-31°=14°,故选:B.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.8.D【分析】根据图象移动的得出移动4次一个循环,得出结果即可;【详解】根据图象可得移动4次图象完成一个循环,∵,∴的坐标是;故答案选D.【点睛】本题主要考查了点的坐标规律题,准确计算解析:D【分析】根据图象移动的得出移动4次一个循环,得出结果即可;【详解】根据图象可得移动4次图象完成一个循环,∵,∴的坐标是;故答案选D.【点睛】本题主要考查了点的坐标规律题,准确计算是解题的关键.二、填空题9.9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9.考点:非负数的性质.解析:9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9.考点:非负数的性质.10.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y轴对称的点,纵坐标相同,横坐标互为相反数∴点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点解析:【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y轴对称的点,纵坐标相同,横坐标互为相反数∴点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.11.∠A=∠C+2α【分析】由角平分线定义得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代换得∠A=∠解析:∠A=∠C+2α【分析】由角平分线定义得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代换得∠A=∠C+2α即可得到答案.【详解】解:如图所示:∵BD为∠ABC的角平分线,∴∠ABC=2∠CBD,又∵AD∥BC,∴∠A+∠ABC=180°,∴∠A+2∠CBD=180°,又∵DF是∠ADC的角平分线,∴∠ADC=2∠ADF,又∵∠ADF=∠ADB+α∴∠ADC=2∠ADB+2α,又∵∠ADC+∠C=180°,∴2∠ADB+2α+∠C=180°,∴∠A+2∠CBD=2∠ADB+2α+∠C又∵∠CBD=∠ADB,∴∠A=∠C+2α,故答案为:∠A=∠C+2α.【点睛】本题考查了平行线的性质,解题需要熟练掌握角平分线的定义,平行线的性质和等式的性质,重点掌握平行线的性质.12.4【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个【详解】∵射线DF⊥直线c∴∠1+∠2=90°,∠1解析:4【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个【详解】∵射线DF⊥直线c∴∠1+∠2=90°,∠1+∠3=90°即与∠1互余的角有∠2,∠3又∵a∥b∴∠3=∠5,∠2=∠4∴∠1互余的角有∠4,∠5∴与∠1互余的角有4个故答案为:4【点睛】本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等.13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵ABDE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.③,④【分析】①[x)示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x)示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)x联立即可判断.【详解】由定义知[x)x≤[x)+1,①[)=-9①不正确,②[x)表示小于x的最大整数,[x)x,[x)-x0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)x有最小值是1,③正确,④由定义知[x)x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)x,∴x[x)x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)x≤[x)+1,利用性质解决问题是关键.15.二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答解析:二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n为奇数时,第n次运动到点(,),当n为偶数时,第n次运动到点(,),所以经过2021次运动后,动点P的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.三、解答题17.(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵;∴∴x=3或x=-1(2)原式=,【解析:(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵;∴∴x=3或x=-1(2)原式=,【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.18.(1)x=±;(2)x=.【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可解析:(1)x=±;(2)x=.【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可得.【详解】解:(1)∵25x2-64=0,∴25x2=64,则x2=,∴x=±;(2)∵x3-3=,∴x3=,则x=.故答案为:(1)x=;(2)x=.【点睛】本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x2=a(a为常数)的形式及平方根、立方根的定义.19.(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即解析:(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即可得解;(2)由平行线的性质及等量代换即可得解.【详解】解:(1)证明:∵∠1=∠2(已知),又∵∠1=∠DMN(对顶角相等),∴∠2=∠DMN(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠DBC+∠C=180°(两直线平行,同旁内角互补),∵∠C=∠D(已知),∵∠DBC+(∠D)=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).(2)∵DB∥EC,∴∠DBC+∠C=180°,∠DEC+∠D=180°,∵∠C=∠D,∴∠DBC=∠DEC.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.20.(1)见解析;(2)见解析;(3),AD∥;(4)【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A画线段AD∥BC,AD=BC,即可;(3)由平移的性质可得,∥BC,,从而可以解析:(1)见解析;(2)见解析;(3),AD∥;(4)【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A画线段AD∥BC,AD=BC,即可;(3)由平移的性质可得,∥BC,,从而可以得到,AD∥;(4)根据点到直线的距离垂线段最短,可知当BH⊥CE时BH最短,由此利用三角形面积公式求解即可.【详解】解:(1)如图所示,即为所求:(2)如图所示,即为所求:(3)平移的性质可得,∥BC,由AD=BC,AD∥BC,从而可以得到,AD∥;故答案为:,AD∥;(4)根据点到直线的距离垂线段最短,可知当BH⊥CE时BH最短,如图所示:∵AD∥BC,∴,∴,∴,∴点H是直线CE上一动点线段BH的最小值为.故答案为:.【点睛】本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.(1);(2)或【分析】(1)先判断在哪两个整数之间,再得出整数部分和小数部分.(2)由的值,由平方差公式,得出的有理化因式即为.【详解】解:(1),,;(2),或.【点睛】本解析:(1);(2)或【分析】(1)先判断在哪两个整数之间,再得出整数部分和小数部分.(2)由的值,由平方差公式,得出的有理化因式即为.【详解】解:(1),,;(2),或.【点睛】本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握.二十二、解答题22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为acm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为acm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3xcm,则宽为2xcm∴6x2=300∴x2=50又∵x>0∴x=∴长方形纸片的长为又∵>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23.(1);(2)①;②【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;(2)①由(1)知,,根据平行线的性质得到,再由折叠的性质及平角的定义解析:(1);(2)①;②【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;(2)①由(1)知,,根据平行线的性质得到,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE=,由可知:,再根据条件和折叠的性质得到,即可求解.【详解】解:(1)如图,由题意可知,∴,∵,∴,,由折叠可知.(2)①由题(1)可知,∵,,再由折叠可知:,;②由可知:,由(1)知,,又的度数比的度数大,,,,.【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.24.(1)见解析;(2)100°;(3)不变,40°【分析】(1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论;(2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再解析:(1)见解析;(2)100°;(3)不变,40°【分析】(1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论;(2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再根据比大,列出等式即可求的度数;(3)如图3,过点作,设直线和直线相交于点,根据平行线的性质和角平分线定义可求的度数.【详解】解:(1)证明:如图1,延长交于点,,,,,,,,;(2)如图2,作,,,,,,平分,,,,,,,平分,,,,,设,,比大,,解得的度数为;(3)的度数不变,理由如下:如图3,过点作,设直线和直线相交于点,平分,平分,,,,,,,,,由(2)可知:,,,,,,.【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.25.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在中,,∴,∵BD是的角平分线,∴,∴,∴是“准互余三角形”;(2)①∵,∴,∴是“准互余三角形”,故①正确;②∵,,∴,∴不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,且,∵三角形是“准互余三角形”,∴或,∴,∴,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB的度数是10°或20°或40°或110°;如图①,当2∠A+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.26.(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F=∠BED,证明见解析;(2)2∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 蔬果种植理论与实践课件
- 2025年浙江省中考语文试题(含答案解析)
- Unit 3 Travel教学设计-2025-2026学年高中英语牛津上海版高中三年级第一学期-牛津上海版2004
- 2025年四川省安全员C证考试100题及答案
- 部编版小学一年级语文下册第一单元检测试题及答案(共3套)
- 2025年高考数学试题分类汇编:立体几何(试卷+解析)
- 2025年全国工业锅炉G1证考试题库(含答案)
- 2025年全国高级育婴员职业技能考试练习题库【附答案】
- 2025年汽车修理工(高级)职业技能考试题库(含答案)
- 蒸发的快慢课件
- 工程造价专业成长路径与技能提升
- 1.1坚持改革开放 课件 统编版道德与法治 九年级上册
- 截肢后病人的护理
- 经皮冠脉介入治疗护理
- 2025年智能楼宇管理师考试试卷:楼宇智能化系统集成
- 中国近现代艺术概况
- 2025年广西中考道德与法治试题答案详解讲评课件
- 赴埃及汉语教师跨文化交际能力调查研究
- 农贸市场食品安全监管与能力提升培训
- DG-TJ08-2090-2024绿色建筑评价标准
- 2024北京七年级(下)期末英语汇编:阅读单选AB篇
评论
0/150
提交评论