综合解析北师大版8年级数学上册期中试题及参考答案详解(精练)_第1页
综合解析北师大版8年级数学上册期中试题及参考答案详解(精练)_第2页
综合解析北师大版8年级数学上册期中试题及参考答案详解(精练)_第3页
综合解析北师大版8年级数学上册期中试题及参考答案详解(精练)_第4页
综合解析北师大版8年级数学上册期中试题及参考答案详解(精练)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版8年级数学上册期中试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(7小题,每小题2分,共计14分)1、若a、b为实数,且,则直线y=axb不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、已知m=,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<63、下面各图中,不能证明勾股定理正确性的是()A. B. C. D.4、如图,点P是以A为圆心,AB为半径的圆弧与数轴的交点,则数轴上点P表示的实数是(

)A.-2 B.-2.2 C.- D.-+15、下列各数中,与2的积为有理数的是(

)A.2 B.3 C. D.6、已知,a介于两个连续自然数之间,则下列结论正确的是(

)A. B. C. D.7、计算下列各式,值最小的是(

)A. B. C. D.二、多选题(3小题,每小题2分,共计6分)1、下列运算中,错误的是(

)A. B. C. D.2、下列实数中的无理数是(

)A. B. C. D.3、下列结论中不正确的是(

)A.数轴上任一点都表示唯一的有理数 B.数轴上任一点都表示唯一的无理数C.两个无理数之和一定是无理数 D.数轴上任意两点之间还有无数个点第Ⅱ卷(非选择题80分)三、填空题(10小题,每小题2分,共计20分)1、若a<1,化简=___.2、在平面直角坐标系中,点与点关于轴对称,则的值是_____.3、我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为______.4、化简:①______;②______;③______.5、如图,在长方形中无重叠放入面积分别为和的两张正方形纸片,则图中空白部分的面积为________.6、五张背面完全相同的卡片上分别写有、、-31、、0.101001001…(相邻两个1间依次多1个0)五个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,抽到有理数的概率是______.7、若将三个数,,表示在数轴上,则被如图所示的墨迹覆盖的数是________.8、在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.9、点P关于x轴对称点是,点P关于y轴对称点是,则__________.10、在Rt△ABC中,∠C=90°,AC=9,AB=15,则点C到AB的距离是_______.四、解答题(6小题,每小题10分,共计60分)1、如图所示,在平面直角坐标系中,点A,B的坐标分别为,,且,满足,点的坐标为.(1)求,的值及;(2)若点在轴上,且,试求点的坐标.2、阅读下列解题过程:;;;…则:(1)化简:(2)观察上面的解题过程,请你猜想一规律:直接写出式子=;(3)利用这一规律计算:的值.3、如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即,求这棵树在离地面多高处被折断(即求AC的长度)?4、如图,在直角坐标系中,的三个顶点坐标分别为,,,请回答下列问题:(1)作出关于轴的对称图形,并直接写出的顶点坐标;(2)的面积为.5、超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?6、先阅读,再解答:由可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如:,请完成下列问题:(1)的有理化因式是_______;(2)化去式子分母中的根号:_____.(直接写结果)(3)(填或)(4)利用你发现的规律计算下列式子的值:-参考答案-一、单选题1、D【解析】【分析】依据即可得到进而得到直线不经过的象限是第四象限.【详解】解:∵∴解得,∴,∴直线不经过的象限是第四象限.故选D.【考点】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.2、B【解析】【分析】直接化简二次根式,得出的取值范围,进而得出答案.【详解】∵m==2+,1<<2,∴3<m<4,故选B.【考点】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.3、C【解析】【分析】把各图中每一部分的面积和整体的面积分别列式表示,根据每一部分的面积之和等于整体的面积,分别化简,再根据化简结果即可解答.【详解】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、根据图形不能证明勾股定理,故本选项符合题意;D、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;故选C.【考点】本题考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.4、D【解析】【分析】在三角形AOB中,利用勾股定理求出AB的长,即可确定出AP的长,得到P表示的实数.【详解】在Rt△AOB中,OA=1,OB=3,根据勾股定理得:AB==,∴AP=AB=,∴OP=AP-OA=-1,则P表示的实数为-+1.故选D.【考点】本题考查了勾股定理,以及实数与数轴,熟练掌握勾股定理是解题的关键.5、D【解析】【分析】把A、B、C、D均与2相乘即可.【详解】解:A、2×2=4为无理数,故不能;B.36C.2D.=6为有理数.故选D【考点】本题考查二次根式乘法、积的算术平方根等概念,熟练掌握概念是解答问题的关键.6、C【解析】【分析】先估算出的范围,即可得出答案.【详解】解:∵,∴,∴在3和4之间,即.故选:C.【考点】本题考查了估算无理数的大小.能估算出的范围是解题的关键.7、A【解析】【分析】根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.【详解】根据实数的运算法则可得:A.;B.;C.;D.;故选A.【考点】本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键..二、多选题1、ABCD【解析】【分析】根据算术平方根和有理数的乘方的求解方法进行逐一求解判断即可【详解】解:A、,故此选项符合题意;B、=4,故此选项符合题意;C、∵根号里面不能为负,故此选项符合题意;D、,故此选项符合题意;故选ABCD.【考点】本题主要考查了算术平方根和有理数的乘方,解题的关键在于能够熟练掌握相关计算方法.2、BC【解析】【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项.【详解】解:A.,是有理数,不符合题意;B、,是无理数,符合题意;C、,是无理数,符合题意;D、,是有理数,不符合题意;故选BC.【考点】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像,等有这样规律的数.3、ABC【解析】【分析】根据实数与数轴上的点的对应关系和无理数的运算进行分析判断.【详解】A选项:数轴上的点与实数是一一对应的,故选项结论错误,符合题意;B选项:数轴上的点与实数是一一对应的,故选项结论错误,符合题意;C选项:如,结果是有理数,故选项结论错误,符合题意;D选项:数轴上任意两点之间还有无数个点,故选项结论正确,不符合题意.故选:ABC.【考点】考查了实数与实数的运算,解题关键是利用了实数的运算与实数与数轴的对应关系.三、填空题1、﹣a【解析】【分析】根据a的范围,a﹣1<0,化简二次根式即可.【详解】解:∵a<1,∴a﹣1<0,=|a﹣1|﹣1=﹣(a﹣1)﹣1=﹣a+1﹣1=﹣a.故答案为:﹣a.【点评】本题考查了二次根式的性质与化简,对于的化简,应先将其转化为绝对值形式,再去绝对值符号,即.2、4【解析】【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,,,则a+b的值是:,故答案为.【考点】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.3、1【解析】【分析】把题中的三角形三边长代入公式求解.【详解】∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为1.【考点】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.4、

4

【解析】【分析】①利用二次根式化简即可;②利用二次根式的乘法法则进行计算即可;③先把各个二次根式化简成最简二次根式,然后进行减法计算即可.【详解】①②③故填(1).4

(2).

(3).【考点】本题考查二次根式化简以及计算,熟练掌握运算法则是解题关键.5、8-12【解析】【分析】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【详解】∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为4cm,=cm,∴AB=4cm,BC=(+4)cm,∴空白面积=(+4)×4-12-16=8+16-12-16=(8-12)cm2,故答案为8-12.【考点】本题主要考查了二次根式的应用,解本题的要点在于求出AB、BC的长度,从而求出空白部分面积.6、##0.4【解析】【分析】根据题意可知有理数有-31、,共2个,根据概率公式即可求解【详解】解:在、、-31、、0.101001001…(相邻两个1间依次多1个0)五个实数中,-31、是有理数,∴任意取一张,抽到有理数的概率是故答案为:【考点】本题考查了实数的分类,根据概率公式求概率,理解题意是解题的关键.7、【解析】【分析】根据数轴确定出被覆盖的数的范围,再根据无理数的大小确定出答案即可.【详解】因为,所以,所以,故不在此范围;因为,所以,故在此范围;因为,所以,故不在此范围.所以被墨迹覆盖的数是.故答案为.【考点】此题考查估算无理数的大小,实数与数轴,解题关键在于估算出取值范围.8、(5,1)【解析】【详解】【分析】根据点坐标平移特征:左减右加,上加下减,即可得出平移之后的点坐标.【详解】∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,∴所得的点的坐标为:(5,1),故答案为(5,1).【考点】本题考查了点的平移,熟知点的坐标的平移特征是解题的关键.9、1【解析】【分析】根据关于坐标轴的对称点的坐标特征,求出a,b的值,即可求解.【详解】∵点P关于x轴对称点是,∴P(a,-2),∵点P关于y轴对称点是,∴b=-2,a=3,∴1,故答案是:1.【考点】本题主要考查关于坐标轴对称的点的坐标特征,熟练掌握“关于x轴对称的两点,横坐标相等,纵坐标互为相反数;关于y轴对称的两点,横坐标互为相反数,纵坐标相等”是解题的关键.10、【解析】【分析】首先根据勾股定理求出直角边BC的长,再根据三角形的面积为定值即可求出则点C到AB的距离【详解】在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC⋅BC=AB⋅h,∴h==故答案为【考点】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键四、解答题1、(1),,(2)点的坐标为或【解析】【分析】(1)由非负数的性质可求得a与b的值,则可得点A与B的坐标,从而求得AB的长,由已知可得CO的长,因此可求得△ABC的面积;(2)设点的坐标为,则可得AM的长度,由题目中的面积关系可得关于x的方程,解方程即可求得x的值,从而求得点M的坐标.(1)∵,∴,,∴,,∴点,点.又∵点,∴,,∴.(2)设点的坐标为,则,又∵,∴,∴,∴,即,解得:或,故点的坐标为或.【考点】本题考查了坐标与图形,绝对值与算术平方根非负性质的应用,三角形的面积计算,涉及方程思想与数形结合思想的应用.2、(1);(2);(3)2019.【解析】【分析】(1)可分母有理化也可利用上面的规律;(2)可分母有理化也可利用上面的规律;(3)先根据已知得到,合并后根据平方差公式即可求解.【详解】解:(1),(2)原式===故答案为:(3)=(=2020﹣1=2019.【考点】本题主要考查了分母有理化的应用、平方差公式、二次根式的混合运算、规律型:数字的变化类,理解题意找到规律是解题关键.3、这棵树在离地面6米处被折断【解析】【分析】设,利用勾股定理列方程求解即可.【详解】解:设,∵在中,,∴,∴.答:这棵树在离地面6米处被折断【考点】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方.当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解.有时也可以利用勾股定理列方程求解.4、(1)图见解析,,,;(2).【解析】【分析】(1)利用轴对称的性质即可画出,再根据坐标系中所画出的三角形即可写出其顶点坐标.(2)如图利用割补法即可求出的面积.【详解】(1)如图,即为所求,由图可知,,..(2)如图取E(1,-2),F(1,-5),G(4,-5),分别连接E、、G、F,由图可知四边形EGF为正方形.所以,即.故答案为:.【考点】本题考查利用轴对称作图,利用轴对称的性质找出对称点的位置是解决问题的关键.5、此车超过每小时80千米的限制速度.【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论