




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版8年级数学上册期中试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(7小题,每小题2分,共计14分)1、在平面直角坐标系中,若点P(a-3,1)与点Q(2,b+1)关于x轴对称,则a+b的值是(
)A.1 B.2 C.3 D.42、如图,若在象棋盘上建立平面直角坐标系xOy,使“帅”的坐标为(﹣1,﹣2)“马”的坐标为(2,﹣2),则“兵”的坐标为(
)A.(﹣3,1) B.(﹣2,1) C.(﹣3,0) D.(﹣2,3)3、点P(3,-2)所在的象限是(
)A.第—象限 B.第二象限 C.第三象限 D.第四象限4、下列二次根式是最简二次根式的是()A. B. C. D.5、下列二次根式中,与同类二次根式的是()A. B. C. D.6、运算后结果正确的是(
)A. B. C. D.7、若点在第二象限,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、多选题(3小题,每小题2分,共计6分)1、下列说法正确的有(
)A.带根号的数都是无理数; B.的平方根是-2;C.-8的立方根是-2; D.无理数都是无限小数.2、下列说法正确的是(
)A.在轴上的点的纵坐标为0B.点到轴的距离是1C.若,,那么点在第四象限D.点,一定在第二象限3、算术平方根等于它本身的数是(
)A.1 B.0 C.-1 D.±1第Ⅱ卷(非选择题80分)三、填空题(10小题,每小题2分,共计20分)1、对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为_____.2、计算:=_____.3、给出表格:0.00010.011100100000.010.1110100利用表格中的规律计算:已知,则____.(用含的代数式表示)4、若、为实数,且,则的值为__________.5、将一根24cm的筷子,置于底面直径为5cm、高为12cm的圆柱体中,如图,设筷子露出在杯子外面长为hcm,则h的最小值__,h的最大值__.6、如图,将一个长方形纸片沿折叠,使C点与A点重合,若,则线段的长是_________.7、若代数式在实数范围内有意义,则实数x的取值范围是______.8、在平面直角坐标系中,点P(2,1)关于x轴的对称点的坐标为_____9、如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_____.10、计算:______.四、解答题(6小题,每小题10分,共计60分)1、如果一个正数m的两个平方根分别是2a-3和a-9,求2m-2的值.2、计算:(1);(2).3、在解决问题“已知,求的值”时,小明是这样分析与解答的:∵,∴∴,即∴∴.请你根据小明的分析过程,解决如下问题:(1)化简:;(2)若,求的值.4、计算(1)(2)5、求下列各式的值:(1);(2).6、如图,正方形网格中一线段的两个端点的坐标分别为(1)在正方形网格中建立平面直角坐标系;(2)若点在轴上运动,当长度最小时,点的坐标为,依据是(3)在(2)的条件下,连接,求的面积.-参考答案-一、单选题1、C【解析】【分析】直接利用关于轴对称点的性质:横坐标不变,纵坐标互为相反数,即可得出,的值,进而得出答案.【详解】解:点与点关于轴对称,,,,,则.故选:C.【考点】此题主要考查了关于轴对称点的性质,正确记忆关于轴对称点的符号关系是解题关键.2、A【解析】【分析】直接利用已知点坐标得出原点的位置进而得出答案.【详解】如图所示:可得“炮”是原点,则“兵”位于点:(﹣3,1)故选A.【考点】此题考查坐标确定位置,正确得出原点位置是解题关键.3、D【解析】【分析】根据第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),可得答案.【详解】解:点P(3,-2)所在的象限是第四象限,故选:D.【考点】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含分母,故A不符合题意;B、被开方数,含分母,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D.【考点】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5、B【解析】【分析】将每个选项化简成最简二次根式,再根据同类二次根式的定义逐一判断即可.【详解】解:A.,与不是同类二次根式;B.,与是同类二次根式;C.与不是同类二次根式;D.与不是同类二次根式;故选:B.【考点】本题考查同类二次根式,利用二次根式的性质将每个选项化简成最简二次根式是解题的关键.6、C【解析】【分析】根据实数的运算法则即可求解;【详解】解:A.,故错误;B.,故错误;C.,故正确;D.,故错误;故选:C.【考点】本题主要考查实数的计算,掌握实数计算的相关法则是解题的关键.7、C【解析】【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b的不等式,再根据不等式的性质,可得B点的坐标符号.【详解】解:根据题意知,解得:a<﹣1,b>2,则a-3<0,1-b<0,∴点在第三象限,故选:C.【考点】本题考查了点的坐标,利用第二象限内点的横坐标小于零,纵坐标大于零得出不等式,又利用不等式的性质得出B点的坐标符号是解题关键.二、多选题1、CD【解析】【分析】分别根据无理数、平方根、立方根的定义对各小题进行逐一判断即可.【详解】A、无限不循环小数是无理数,故该选项错误,不符合题意;B、的平方根是,故该选项错误,不符合题意;C、-8的立方根是-2,故该选项正确,符合题意;D、无理数是无限不循环小数,故该项说法正确,符合题意;故选:C、D.【考点】此题考查了无理数、平方根、立方根的定义,掌握无理数、平方根、立方根的定义是解题的关键.2、ABC【解析】【分析】根据坐标轴上点的坐标特点,点的坐标到坐标轴的距离及各个象限内点的坐标符号特点逐一判断可得.【详解】解:A.在x轴上的点的纵坐标为0,说法正确,故本选项符合题意;B.点P(−1,3)到y轴的距离是1,说法正确,故本选项符合题意;C.若xy<0,x−y>0,则x>0,y<0,所以点Q(x,y)在第四象限,说法正确,故本选项符合题意;D.−a2−1<0,|b|≥0,所以点A(−a2−1,|b|)在x轴或第二象限,故原说法错误,故本选项不合题意.故选:ABC.【考点】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3、AB【解析】【分析】根据算术平方根的求解,可得算术平方根等于本身的数只有0和1,即可求解.【详解】解:根据算术平方根的性质,算术平方根等于本身的数只有0和1故选AB【考点】本题考查了算术平方根,掌握算术平方根的求解是解题的关键.三、填空题1、1【解析】【分析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+1)2﹣(x+1)(x﹣2)=6,整理得,3x+3=6,解得,x=1,故答案为1.【考点】本题考查了解方程,涉及完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.2、【解析】【分析】根据二次根式乘法运算法则进行运算即可得出答案.【详解】解:==,故答案为:.【考点】本次考查二次根式乘法运算,熟练二次根式乘法运算法则即可.3、【解析】【分析】根据题意易得,然后问题可求解.【详解】解:由,则;故答案为:.【考点】本题主要考查二次根式的性质,熟练掌握二次根式的性质是解题的关键.4、5【解析】【分析】根据被开方数的非负性可先求出a、b的值,然后代入求解即可.【详解】解:由可得:∴,∴,即,∴,∴,故答案为5.【考点】本题主要考查被开方数的非负性,关键是熟练掌握算术平方根的性质.5、
11cm
12cm【解析】【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h最大,当筷子与杯底及杯高构成直角三角形时h最小,利用勾股定理计算即可.【详解】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12(cm).当筷子与杯底及杯高构成直角三角形时h最小,此时,在杯子内的长度==13(cm),故h=24﹣13=11(cm).故h的取值范围是11≤h≤12cm.故答案为:11cm;12cm.【考点】此题考查勾股定理的实际应用,正确理解题意、掌握勾股定理的计算公式是解题的关键.6、【解析】【分析】根据折叠的性质和勾股定理即可求得.【详解】解:∵长方形纸片,∴,,根据折叠的性质可得,,,设,,根据勾股定理,即,解得,故答案为:.【考点】本题考查折叠与勾股定理.能正确表示直角三角形的三边是解题关键.7、【解析】【分析】根据二次根式有意义的条件即可求得数x的取值范围.【详解】在实数范围内有意义,,解得.故答案为:.【考点】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.8、(2,1)【解析】【分析】根据与x轴对称的点的性质,求出对称点的坐标即可.【详解】∵对称点与点P(2,1)关于x轴对称∴保持横坐标不变,纵坐标取相反数∴对称点的坐标为故答案为:.【考点】本题考查了关于x轴的对称点的坐标问题,掌握与x轴对称的点的性质是解题的关键.9、(2,6)【解析】【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用.过点M作MF⊥CD于F,过C作CE⊥OA于E,在Rt△CMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标.【详解】∵四边形OCDB是平行四边形,点B的坐标为(16,0),CD∥OA,CD=OB=16,过点M作MF⊥CD于F,则过C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM−ME=OM−CF=10−8=2,连接MC,∴在Rt△CMF中,∴点C的坐标为(2,6).故答案为(2,6).【考点】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键.10、【解析】【分析】根据立方根和算数平方根的性质计算,即可得到答案.【详解】故答案为:.【考点】本题考查了立方根和算术平方根的知识;解题的关键是熟练掌握立方根、算术平方根的性质,从而完成求解.四、解答题1、48【解析】【分析】根据一个正数的两个平方根互为相反数求出a的值,利用平方根和平方的关系求出m,再求出2m-2的值.【详解】解:∵一个正数的两个平方根分别是2a-3和a-9,
∴(2a-3)+(a-9)=0,解得a=4,∴这个正数为(2a-3)2=52=25,∴2m-2=2×25-2=48;故答案为48.【考点】本题考查平方根.2、(1)(2)【解析】【分析】(1)先化简,再合并同类二次根式;(2)先化简括号内二次根式再合并,再利用二次根式乘法计算即可.(1)解:;(2)解:.【考点】本题考查了二次根式的混合运算,掌握二次根式的性质是解本题的关键.3、(1);(2)2.【解析】【分析】(1)根据分母有理化的方法可以解答本题;(2)根据题目中的例子可以灵活变形解答本题.【详解】解:(1)(2)∵∴∴∴∴∴【考点】二次根式的化简求值,熟练掌握分母有理化的方法是解题的关键.4、(1);(2)0【解析】【分析】(1)先算乘除并化简,再算加减法;(2)先利用平方差公式计算,再作加减法.【详解】解:(1)===;(2)==0【考点】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.5、(1);(2)0.【解析】【分析】(1)根据立方根定义先将原式中的和计算出来,然后再相加即可得到结果;(2)根据立方根定义先将原式中的、和计算出来,然后再加减即可得到结果.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八中自主招生考试题及答案
- 解析卷公务员考试《常识》同步练习试题(含答案及解析)
- 护理查对制度试题(含答案)
- 贵州企业招聘:2025贵州黔晨综合发展有限公司招聘15人考前自测高频考点模拟试题及完整答案详解1套
- 2025年在线职业技能认证平台投资风险评估分析报告
- 2025年文化娱乐产业产业链重构与协同发展报告
- 2025年婴幼儿配方食品营养配方研究进展与挑战分析报告
- 2025年城市慢行系统建设与城市交通拥堵治理创新策略可行性研究报告
- 2025年教育行业质量评估与认证体系在学校特色教育中的应用报告
- 2025年海洋生态修复政策与海洋生物保护研究报告
- 4.《花之歌》教学设计-2024-2025学年统编版语文六年级上册
- 2025国投生物制造创新研究院有限公司招聘(31人)考试备考试题及答案解析
- 新学期,新征程+课件-2025-2026学年高二上学期开学第一课主题班会
- 2025新版企业员工劳动合同范本
- 医院信息化建设中长期规划(十五五规划2025年)
- 国家中医药管理局《中医药事业发展“十五五”规划》全文
- 阿尔茨海默病及其他类型痴呆临床路径表单
- 公开课第一课素描基础入门课件
- 数据结构ppt课件完整版
- GB∕T 36527-2018 洁净室及相关受控环境 节能指南
- 应用语言学(全套课件197P)
评论
0/150
提交评论