版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期中试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、对于反比例函数,下列说法错误的是(
)A.它的图像在第一、三象限B.它的函数值y随x的增大而减小C.点P为图像上的任意一点,过点P作PA⊥x轴于点A.△POA的面积是D.若点A(-1,)和点B(,)在这个函数图像上,则<2、若函数y=(a﹣1)x2+2x+a2﹣1是二次函数,则()A.a≠1 B.a≠﹣1 C.a=1 D.a=±13、若y=(m+1)是二次函数,则m=
(
)A.-1 B.7 C.-1或7 D.以上都不对4、正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为(
)A. B. C. D.5、如图,在中,的平分线交于点交的延长线于点于点,若,则的周长为(
)A. B. C. D.6、如图,四边形OABC是平行四边形,点A的坐标为A(3,0),∠COA=60°,D为边AB的中点,反比例函数y=(x>0)的图象经过C,D两点,直线CD与y轴相交于点E,则点E的坐标为(
)A.(0,2) B.(0,3) C.(0,5) D.(0,6)二、多选题(7小题,每小题2分,共计14分)1、如图,将绕正方形ABCD的顶点A顺时针旋转90°得,连结EF交AB于H,则下列结论正确的是(
)A.AE⊥AF B.EF∶AF=∶1 C.AF2=FH·FE D.FB∶FC=HB∶EC2、如图,在△ABC中,D,E分别是边AB,AC上的点,DE∥BC,AD:DB=2:1,下列结论中正确的是()A. B.C. D.AD•AB=AE•AC3、在Rt△ABC中,∠C=90°,当已知∠A和a时,求c,不能选择的关系式是(
)A.c= B.c= C.c=a·tanA D.c=4、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象不可能是()A. B.C. D.5、下表时二次函数y=ax2+bx+c的x,y的部分对应值:…………则对于该函数的性质的判断中正确的是()A.该二次函数有最大值B.不等式y>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的两个实数根分别位于﹣<x<0和2<x<之间D.当x>0时,函数值y随x的增大而增大6、若反比例函数y=的图象在每一个象限内y的值随x的增大而增大,则关于x的函数y=(1+m)x+m2+3的图象经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7、已知函数y=的图象如图,以下结论:其中正确的有(
)A.m<0B.在每个分支上y随x的增大而增大C.若点A(﹣1,a)、点B(2,b)在图象上,则a<bD.若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.中有下列问题:“今有邑方不知大小,各中开门.出北门八十步有木,出西门二百四十五步见木.问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,,,EF过点A,且步,步,已知每步约40厘米,则正方形的边长约为__________米.2、如图,在中,,点D是的中点,过点D作,垂足为点E,连接,若,,则________.3、如图,抛物线与直线交于A(-1,P),B(3,q)两点,则不等式的解集是_____.4、如果A为锐角,且则_____.5、如图,在△ABC中,∠B=45°,tanC=,AB=,则AC=_____.6、已知函数y的图象如图所示,若直线y=kx﹣3与该图象有公共点,则k的最大值与最小值的和为_____.7、如图,,点在上,与交于点,,,则的长为.四、解答题(6小题,每小题10分,共计60分)1、如图,在平面直角坐标系中,O为坐标原点,点A坐标为(3,0),四边形OABC为平行四边形,反比例函数y=(x>0)的图象经过点C,与边AB交于点D,若OC=2,tan∠AOC=1.(1)求反比例函数解析式;(2)点P(a,0)是x轴上一动点,求|PC-PD|最大时a的值;(3)连接CA,在反比例函数图象上是否存在点M,平面内是否存在点N,使得四边形CAMN为矩形,若存在,请直接写出点M的坐标;若不存在,请说明理由.2、若二次函数图像经过,两点,求、的值.3、如图,Rt△ABO的顶点A是反比例函数的图象与一次函数的图象在第二象限的交点,AB⊥x轴于点B,且.(1)求反比例函数和一次函数的解析式;(2)求一次函数与反比例函数图象的两个交点A,C的坐标.4、2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件).(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?5、某校九年级数学兴趣小组的活动课题是“测量物体高度”.小组成员小明与小红分别采用不同的方案测量同一个底面为圆形的古塔高度,以下是他们研究报告的部分记录内容:课题:测量古塔的高度小明的研究报告小红的研究报告图示测量方案与测量数据用距离地面高度为1.6m的测角器测出古塔顶端的仰角为35°,再用皮尺测得测角器所在位置与古塔底部边缘的最短距离为30m.在点A用距离地面高度为1.6m的测角器测出古塔顶端的仰角为17°,然后沿AD方向走58.8m到达点B,测出古塔顶端的仰角为45°.参考数据sin35°≈0.57,cos35°≈0.82,tan35°≈0.70sin17°≈0.29,cos17°≈0.96,tan17°≈0.30,计算古塔高度(结果精确到0.1m)30×tan35°+1.6≈22.6(m)(1)写出小红研究报告中“计算古塔高度”的解答过程;(2)数学老师说小红的结果比较准确,而小明的结果与古塔的实际高度偏差较大.请你针对小明的测量方案分析测量发生偏差的原因.6、如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.-参考答案-一、单选题1、B【解析】【分析】根据反比例函数图象与系数的关系解答.【详解】解:A、反比例函数中的>0,则该函数图象分布在第一、三象限,故本选项说法正确.B、反比例函数中的>0,则该函数图象在每一象限内y随x的增大而减小,故本选项说法错误.C、点P为图像上的任意一点,过点P作PA⊥x轴于点A.,∴△POA的面积=,故本选项正确.D、∵反比例函数,点A(-1,)和点B(,)在这个函数图像上,则y1<y2,故本选项正确.故选:B.【考点】本题考查了反比例函数的性质:反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;还考查了k的几何意义.2、A【解析】【分析】利用二次函数定义进行解答即可.【详解】解:由题意得:a﹣1≠0,解得:a≠1,故选:A.【考点】本题主要考查了二次函数的定义,准确计算是解题的关键.3、B【解析】【分析】令x的指数为2,系数不为0,列出方程与不等式解答即可.【详解】由题意得:m2-6m-5=2;且m+1≠0;解得m=7或-1;m≠-1,∴m=7,故选:B.【考点】利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为0.4、C【解析】【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可.【详解】解:∵新正方形的边长为x+4,原正方形的边长为4,∴新正方形的面积为(x+4)2,原正方形的面积为16,∴y=(x+4)2-16=x2+8x,故选:C.【考点】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.5、A【解析】【分析】先根据平行四边形的性质说明△ABE是等腰三角形、求得BE、EC,再结合BG⊥AE,运用勾股定理求得AG,进一步求得AE和△ABE的周长,然后再说明△ABE∽△FCE且相似比为,最后根据相似三角形的周长之比等于相似比列方程求解即可.【详解】解:∵∴AD∥BC,AB//DF∴∠DAE=∠BEA∵∠DAE=∠BAE∴∠BAE=∠BEA∴BE=AB=10,即EC=BC-BE=5∵BG⊥AE∴AG=EG=AE∵在Rt△ABG中,AB=10,BG=8∴∴AE=2AG=12∴△ABE的周长为AB+BE+AE=10+10+12=32∵AB∥DF∴△ABE∽△FCE且相似比为∴,解得=16.故答案为A.【考点】本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理、相似三角形的判定与性质等知识点,掌握相似三角形的周长之比等于相似比是解答本题的关键.6、B【解析】【分析】作CE⊥x轴于点E,过B作BF⊥x轴于F,过D作DM⊥x轴于M,设C的坐标为(x,x),表示出D的坐标,将C、D两点坐标代入反比例函数的解析式,解关于x的方程求出x即可得到点C、D的坐标,进而求得直线CD的解析式,最后计算该直线与y轴交点坐标即可得出结果.【详解】解:作CE⊥x轴于点E,则∠CEO=90°,过B作BF⊥x轴于F,过D作DM⊥x轴于M,则BF=CE,DM∥BF,BF=CE,∵D为AB的中点,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴设C的坐标为(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四边形OABC是平行四边形,A(3,0),∴OF=3+x,OM=3+x,即D点的坐标为(3+x,),把C、D的坐标代入y=得:k=x•x=(3+x)•,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),设直线CD解析式为:y=ax+b,则,解得,∴直线CD解析式为:,∴当x=0时,,∴点E的坐标为(0,).故选:B.【考点】本题主要考查了平行四边形的性质、运用待定系数法求函数的解析式以及含度角的直角三角形的性质.根据反比例函数图象经过C、D两点,得出关于x的方程是解决问题的关键.二、多选题1、ABD【解析】【分析】由旋转得到,进而可得,根据等腰直角三角形的性质以及勾股定理可得EF∶AF=∶1,根据相似三角对应边的比等于相似比可得FB∶FC=HB∶EC,而根据题意无法证明AF2=FH·FE,由此即可求得答案.【详解】解:∵四边形ABCD是正方形,∴,,∵旋转,∴,,,∴,即.,故A正确;是等腰直角三角形,,,(舍负),∴,故B正确;,,,故D正确.与不相似,∴无法证得,即无法证得,故C不正确.故选:ABD.【考点】本题考查了正方形的性质,等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等相关知识,熟练掌握相似三角形的判定与性质是解决本题的关键.2、ABC【解析】【分析】由DE∥BC,AD:DB=2:1,可得△ADE∽△ABC,推出,,推出,由此即可判断;【详解】解:∵DE∥BC,AD:DB=2:1,∴△ADE∽△ABC,∴,,∴,∴选项A、B、C正确,∵DE∥BC,∴,选项D错误,故选:ABC.【考点】本题考查了平行线分线段成比例定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.3、BCD【解析】【分析】在Rt△ABC中,∠C=90°,sinA=变形可判断A,在Rt△ABC中,∠C=90°,由cosA=和tanA=,可得可判断B、D,在Rt△ABC中,∠C=90°,由tanA=,可得,由勾股定理c=,可判断C.【详解】解:在Rt△ABC中,∠C=90°,∵sinA=,∴c=,故选项A正确;在Rt△ABC中,∠C=90°,∵cosA=∴∵tanA=∴∴故选项B不正确;在Rt△ABC中,∠C=90°,∵tanA=∴∴c=故选项C不正确在Rt△ABC中,∠C=90°,∵tanA=∴∵cosA=∴∴故选项D不正确;不能选择的关系式是BCD.故选择BCD.【考点】本题主要考查解三角形,勾股定理,解题的关键是熟练运用三角函数的定义求解.4、ABD【解析】【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【详解】A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线来说,对称轴x=<0,应在y轴的左侧,图形错误,故符合题意.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线来说,图象应开口向下,故不合题意,图形错误,故符合题意.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线来说,图象开口向下,对称轴x=位于y轴的右侧,图形正确,故不符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线来说,图象开口向下,a<0,故不合题意,图形错误,故符合题意.故选ABD.【考点】主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.5、BC【解析】【分析】由图表可得二次函数y=ax2+bx+c的对称轴为直线x=1,a>0,即可判断A,D不正确,由图表可直接判断B,C正确.【详解】解:∵当x=0时,y=-1;当x=2时,y=-1;当x=,y=;当x=,y=;∴二次函数y=ax2+bx+c的对称轴为直线x=1,x>1时,y随x的增大而增大,x<1时,y随x的增大而减小.∴a>0即二次函数有最小值则A,D错误由图表可得:不等式y>-1的解集是x<0或x>2;由图表可得:方程ax2+bx+c=0的两个实数根分别位于-<x<0和2<x<之间;所以选项B,C正确,故选:BC.【考点】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值,理解图表中信息是本题的关键.6、ABD【解析】【分析】先根据反比例函数y=的图象在每一个象限内,y随x的增大而增大可得出关于m的不等式,求出m的取值范围,然后推知函数y=(1+m)x+m2+3的图象所经过的象限.【详解】反比例函数y=的图象在每一个象限内y的值随x值的增大而增大,m+2<0,m<-2,1+m<-1,m2+3>7,函数y=(1+m)x+m2+3的图象经过第一、二、四象限,故选:ABD.【考点】本题考查了反比例函数的性质,一次函数的性质,反比例函数的图象,熟悉函数图象与系数的关系是解题的关键.7、ABD【解析】【分析】利用反比例函数的性质及反比例函数的图象上的点的坐标特征逐项判定即可.【详解】解:①根据反比例函数的图象的两个分支分别位于二、四象限,可得m<0,故①正确;②在每个分支上y随x的增大而增大,故②正确;③若点A(﹣1,a)、点B(2,b)在图象上,则a>b,故③错误;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上,正确.故选:ABD.【考点】本题主要考查了反比例函数的性质及反比例函数的图象上的点的坐标特征,掌握反比例函数的图象上的点的坐标特征成为解答本题的关键.三、填空题1、112【解析】【分析】根据题意,可知Rt△AEN∽Rt△FAN,从而可以得到对应边的比相等,从而可以求得正方形的边长.【详解】解:∵点M、点N分别是正方形ABCD的边AD、AB的中点,∴,∴AM=AN,由题意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽Rt△FAN,∴,∵AM=AN,∴,解得:AM=140,∴AD=2AM=280(步),∴(米)故答案为:112.【考点】本题考查相似三角形的应用、数学常识、正方形的性质,解答本题的关键是明确题意.利用相似三角形的性质和数形结合的思想解答.2、3【解析】【分析】根据直角三角形的性质得到AB=10,利用勾股定理求出AC,再说明DE∥AC,得到,即可求出DE.【详解】解:∵∠ACB=90°,点D为AB中点,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案为:3.【考点】本题考查了直角三角形的性质,勾股定理,平行线分线段成比例,解题的关键是通过平行得到比例式.3、或.【解析】【分析】由可变形为,即比较抛物线与直线之间关系,而直线PQ:与直线AB:关于与y轴对称,由此可知抛物线与直线交于,两点,再观察两函数图象的上下位置关系,即可得出结论.【详解】解:∵抛物线与直线交于,两点,∴,,∴抛物线与直线交于,两点,观察函数图象可知:当或时,直线在抛物线的下方,∴不等式的解集为或.故答案为或.【考点】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.4、【解析】【分析】将已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系化简求出2sinAcosA的值,即可求出sinAcosA的值.【详解】解:sinA+cosA=,两边平方得:(sinA+cosA)2=,(sinA)2+2sinAcosA+(cosA)2=则1+2sinAcosA=,解得sinAcosA=.故答案为:.【考点】此题考查了同角三角函数关系,熟练掌握同角三角函数的基本关系是解本题的关键.5、【解析】【分析】先过点A作AD⊥BC,垂足是点D,得出AD2+BD2=AB2=2,再根据∠B=45°,得出AD=BD=1,然后根据tanC=,得出=,CD=2,最后根据勾股定理即可求出AC.【详解】过点A作AD⊥BC,垂足是点D,∵AB=,∴AD2+BD2=AB2=2,∵∠B=45°,∴∠BAD=∠B=45°,∴AD=BD,∴AD2=BD2=1,∴AD=BD=1,∵tanC=,∴=,∴CD=2,∴AC===.故答案为.【考点】此题考查了解直角三角形,用到的知识点是勾股定理、解直角三角形等,关键是作出辅助线,构造直角三角形.6、17【解析】【分析】根据题意可知,当直线经过点(1,12)时,直线y=kx-3与该图象有公共点;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,可得出k的最大值是15,最小值是2,即可得它们的和为17.【详解】解:当直线经过点(1,12)时,12=k-3,解得k=15;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,整理得x2-(10+k)x+36=0,∴10+k=±12,解得k=2或k=-22(舍去),∴k的最大值是15,最小值是2,∴k的最大值与最小值的和为15+2=17.故答案为:17.【考点】本题考查分段函数的图象与性质,一次函数图象上点的坐标特征,结合图象求出k的最大值和最小值是解题的关键.7、【解析】【分析】根据平行线分线段成比例定理,由AB∥GH,得出,由GH∥CD,得出,将两个式子相加,即可求出GH的长.【详解】解:,,即①,,,即②,①②,得,,,解得.故答案为:【考点】本题考查了平行线分线段成比例定理,熟练运用等式的性质进行计算.本题难度适中.四、解答题1、(1)(2)|PC−PD|最大时a的值为6(3)存在,点M的坐标为(,)【解析】【分析】(1)先确定出OE=CE=2,即可得出点C坐标,最后用待定系数法即可得出结论;(2)先求出OC解析式,由平行四边形的性质可得BC=OA=3,BC∥OA,AB∥OC,利用待定系数法可求AB解析式,求出点D的坐标,再根据三角形关系可得出当点P,C,D三点共线时,|PC-PD|最大,求出直线CD的解析式,令y=0即可求解;(3)若四边形CAMN为矩形,则△CAM是直角三角形且AC为一条直角边,根据直角顶点需要分两种情况,画出图形分别求解即可.(1)解:如图1,过点C作CE⊥x轴于E,∴∠CEO=90°,∵tan∠AOC=1,∴∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴k=2×2=4,∴反比例函数解析式为y=;(2)解:∵点C(2,2),点O(0,0),∴OC解析式为:y=x,∵四边形OABC是平行四边形,点A坐标为(3,0),∴BC=OA=3,BC∥OA,AB∥OC,∴点B(5,2),∴设AB解析式为:y=x+b,∴2=5+b,∴b=-3,∴AB解析式为:y=x-3,联立方程组可得:,∴或(舍去),∴点D(4,1);在△PCD中,|PC-PD|<CD,则当点P,C,D三点共线时,|PC-PD|=CD,此时,|PC-PD|取得最大值,由(1)知C(2,2),D(4,1),设直线CD的解析式为:y=mx+n,∴,解得,∴直线CD的解析式为:y=x+3,令y=0,即x+3=0,得x=6,∴|PC-PD|最大时a的值为6;(3)(3)存在,理由如下:若四边形CAMN为矩形,则△CAM是直角三角形,则①当点A为直角顶点时,如图2,过点A作AC的垂线与y=交于点M,分别过点C,M作x轴的垂线,垂足分别为点F,G,由“一线三等角”模型可得△AFC∽△MGA,则AF:MG=CF:AG,∵C(2,2),A(3,0),∴OF=CF=2,AF=1,∴1:MG=2:AG,即MG:AG=1:2,设MG=t,则AG=2t,∴M(2t+3,t),∵点M在反比例函数y=的图象上,则t(2t+3)=4,解得t=,(负值舍去),∴M(,);②当点C为直角顶点时,这种情况不成立;综上,点M的坐标为(,).【考点】本题考查了反比例函数综合问题,涉及矩形的判定与性质,相似三角形的性质与判定.第一问的关键是求出点C的坐标,第二问的关键是知道当点P,C,D三点共线时,|PC-PD|取得最大值,第三问的关键是利用矩形的内角是直角进行分类讨论,利用相似三角形的性质建立等式.2、b=-3,c=-4.【解析】【分析】将,代入中,求解二元一次方程组即可解题.【详解】解:将,代入中得,解得:∴b=-3,c=-4.【考点】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.3、(1),;(2)A(-1,6),C(6,-1).【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创维光伏安装合同范本
- 口袋相机转让合同范本
- 协议车买卖合同协议书
- 冷冻仓储租赁合同范本
- 共享麻将合作合同范本
- 厂房保证金协议书范本
- 农村废弃大坑合同范本
- 双方经济纠纷合同范本
- 2026年一级注册建筑师之建筑经济、施工与设计业务管理考试题库300道(重点)
- 2026年上海海洋大学单招综合素质考试题库附答案
- GB/T 4339-2008金属材料热膨胀特征参数的测定
- GB/T 36197-2018土壤质量土壤采样技术指南
- 无人机驾驶员航空知识手册培训教材(多旋翼)课件
- 六西格玛改善案例课件
- 标准法兰、阀门螺栓对照表
- 《艺术概论》考试复习题库(附答案)
- Soreha-Biodex-S4-多关节等速肌力测试训练系统课件
- 派车单(标准样本)
- 混凝土膨胀剂检试验报告
- 村卫生室基本公共卫生服务项目绩效考核指标明细表格模板(参照省级标准)
- 舒伯特的艺术歌曲《魔王》
评论
0/150
提交评论