中考数学总复习《 圆》题库检测试题打印附答案详解【巩固】_第1页
中考数学总复习《 圆》题库检测试题打印附答案详解【巩固】_第2页
中考数学总复习《 圆》题库检测试题打印附答案详解【巩固】_第3页
中考数学总复习《 圆》题库检测试题打印附答案详解【巩固】_第4页
中考数学总复习《 圆》题库检测试题打印附答案详解【巩固】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《圆》题库检测试题打印考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在中,,,,以点为圆心,为半径的圆与所在直线的位置关系是(

)A.相交 B.相离 C.相切 D.无法判断2、如图,在△ABC中,AG平分∠CAB,使用尺规作射线CD,与AG交于点E,下列判断正确的是(

A.AG平分CDB.C.点E是△ABC的内心D.点E到点A,B,C的距离相等3、如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠BCD=()A.105° B.110° C.115° D.120°4、往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为(

)A. B. C. D.5、已知扇形的圆心角为,半径为,则弧长为(

)A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在中,,,,将绕顺时针旋转后得,将线段绕点逆时针旋转后得线段,分别以,为圆心,、长为半径画弧和弧,连接,则图中阴影部分面积是________.2、如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.3、如图,是的直径,弦于点E,,,则的半径_______.4、如图,在中,点是的中点,连接交弦于点,若,,则的长是______.5、圆锥形冰淇淋的母线长是12cm,侧面积是60πcm2,则底面圆的半径长等于_____.三、解答题(5小题,每小题10分,共计50分)1、如图所示,四边形ABCD的顶点在同一个圆上,另一个圆的圆心在AB边上,且该圆与四边形ABCD的其余三条边相切.求证:.2、如图,AB为⊙O的直径,C、D为⊙O上的两个点,==,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.3、如图,,比较与的长度,并证明你的结论.4、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,求线段AE的长.5、如图,正方形ABCD的外接圆为⊙O,点P在劣弧CD上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.-参考答案-一、单选题1、A【解析】【分析】过点C作CD⊥AB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解.【详解】解:过点C作CD⊥AB于点D,如图所示:∵,,,∴,根据等积法可得,∴,∵以点为圆心,为半径的圆,∴该圆的半径为,∵,∴圆与AB所在的直线的位置关系为相交,故选A.【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键.2、C【解析】【分析】根据作法可得CD平分∠ACB,结合题意即可求解.【详解】解:由作法得CD平分∠ACB,

∵AG平分∠CAB,∴E点为△ABC的内心故答案为:C.【考点】此题考查了尺规作图(角平分线),以及三角形角平分线的性质,熟练掌握相关基本性质是解题的关键.3、C【解析】【分析】连接AC,然后根据圆内接四边形的性质,可以得到∠ADC的度数,再根据点D是弧AC的中点,可以得到∠DCA的度数,直径所对的圆周角是90°,从而可以求得∠BCD的度数.【详解】解:连接AC,∵∠ABC=50°,四边形ABCD是圆内接四边形,∴∠ADC=130°,∵点D是弧AC的中点,∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直径,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故选:C.【考点】本题考查圆周角定理、圆心角、弧、弦的关系,解答本题的关键是明确题意,利用数形结合的思想解答.4、C【解析】【分析】过点O作OD⊥AB于D,交⊙O于E,连接OA,根据垂径定理即可求得AD的长,又由⊙O的直径为,求得OA的长,然后根据勾股定理,即可求得OD的长,进而求得油的最大深度的长.【详解】解:过点O作OD⊥AB于D,交⊙O于E,连接OA,由垂径定理得:,∵⊙O的直径为,∴,在中,由勾股定理得:,∴,∴油的最大深度为,故选:.【考点】本题主要考查了垂径定理的知识.此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决.5、D【解析】【分析】根据扇形的弧长公式计算即可.【详解】∵扇形的圆心角为30°,半径为2cm,∴弧长cm故答案为:D.【考点】本题主要考查扇形的弧长,熟记扇形的弧长公式是解题的关键.二、填空题1、【解析】【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积计算即可得到答案.【详解】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴,由旋转得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,,∴△DHE≌△BOA(AAS),∴DH=OB=1,,∴阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积,故答案为:.【考点】本题考查的是扇形面积的计算、旋转的性质、全等三角形的判定和性质,掌握扇形的面积公式和旋转的性质是解题的关键.2、10或70【解析】【分析】分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.【详解】如图,作半径于C,连接OB,由垂径定理得:=AB=×60=30cm,在中,,当水位上升到圆心以下时

水面宽80cm时,则,水面上升的高度为:;当水位上升到圆心以上时,水面上升的高度为:,综上可得,水面上升的高度为30cm或70cm,故答案为:10或70.【考点】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.3、【解析】【分析】设半径为r,则,得到,由垂径定理得到,再根据勾股定理,即可求出答案.【详解】解:由题意,设半径为r,则,∵,∴,∵是的直径,弦于点E,∴点E是CD的中点,∵,∴,在直角△OCE中,由勾股定理得,即,解得:.故答案为:.【考点】本题考查了垂径定理,勾股定理,解题的关键是熟练掌握垂径定理和勾股定理进行解题.4、8.【解析】【分析】连结OA,OB,点是的中点,半径交弦于点,根据垂径定理可得OC⊥AB,AD=BD,由,,求半径OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【详解】解:连结OA,OB,∵点是的中点,半径交弦于点,∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案为8.【考点】本题考查垂径定理的推论,勾股定理,线段中点定义,掌握垂径定理的推论,平分弧的直径垂直平分这条弧所对的弦,勾股定理,线段中点定义是解题关键.5、5cm.【解析】【分析】设圆锥的底面圆的半径长为rcm,根据圆锥的侧面积公式计算即可.【详解】解:设圆锥的底面圆的半径长为rcm.则×2π•r×12=60π,解得:r=5(cm),故答案为5cm.【考点】圆锥的侧面积公式是本题的考点,牢记其公式是解题的关键.三、解答题1、见解析【解析】【分析】证法一,在射线EA上截取,连接OD,OE,OF,OG,因为,所以,所以,,由圆的内接四边形性质得,由AD,DC是半圆O的切线得,,,即,所以,同理,即可得出结论.证法二,在BO上截取,连接FM,OF.过点O作,交FM的延长线于点N,连接OE,OD,易证,,,所以.由圆的内接四边形性质得,,所以.因为,所以,得,,所以,同理得,即可得出结论.【详解】证法一如图所示,与AD相切于点E,与BC相切于点F,在射线EA上截取,连接OD,OE,OF,OG,则易证.,.四边形ABCD内接于圆,.AD,DC是半圆O的切线,,,,,,即,同理,.证法二如图所示,与AD相切于点E,与BC相切于点F,在BO上截取,连接FM,OF.过点O作,交FM的延长线于点N,连接OE,OD.,.,,,,.,,.AD,DC是半圆O的切线,.四边形ABCD内接于圆,,,.,,,,,同理,.【考点】本题主要考查了圆的内接四边形性质、切线的性质,解题的关键是理清题意,正确作出辅助线.2、(1)见解析;(2)3【解析】【分析】(1)连接OD,根据已知条件得到∠BOD=180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【详解】(1)证明:连接OD,∵,∴∠BOD=180°=60°,∵,∴∠EAD=∠DAB=BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=AB=3,∴AD==3.【考点】本题考查了切线的证明,及线段长度的计算,熟知圆的性质及切线的证明方法,以及含30°角的直角三角形的特点是解题的关键.3、=,见解析.【解析】【分析】根据圆心角、弧、弦的关系,由AD=BC解得=,继而得到=.【详解】解:=,证明如下:∵AD=BC,∴=,∴+=+,即=.【考点】本题考查圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.4、2【解析】【分析】连接OC,利用直径AB=10,则OC=OA=5,再由CD⊥AB,根据垂径定理得CE=DE=CD=4,然后利用勾股定理计算出OE,再利用AE=OA-OE进行计算即可.【详解】连接OC,如图,∵AB是⊙O的直径,AB=10,∴OC=OA=5,∵CD⊥AB,∴CE=DE=CD=×8=4,在Rt△OCE中,OC=5,CE=4,∴OE==3,∴AE=OA﹣OE=5﹣3=2.【考点】本题考查了垂径定理,掌握垂径定理及勾股定理是关键.5、(1)45°;(2)8【解析】【详解】试题分析:(1)连接OB,OC,由正方形的性质知,是等腰

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论