




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
冀教版8年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为()A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)2、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是()A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=43、如图,把一长方形纸片ABCD的一角沿AE折叠,点D的对应点落在∠BAC内部.若,且,则∠DAE的度数为()A.12° B.24° C.39° D.45°4、如图,在平面直角坐标系中xOy中,已知点A的坐标是(0,2),以OA为边在右侧作等边三角形OAA1,过点A1作x轴的垂线,垂足为点O1,以O1A1为边在右侧作等边三角形O1A1A2,再过点A2作x轴的垂线,垂足为点O2,以O2A2为边在右侧作等边三角形O2A2A3,……,按此规律继续作下去,得到等边三角形O2020A2020A2021,则点A2023的纵坐标为()A.()2021 B.()2022 C.()2023 D.()20245、为了解某市七年级学生的一分钟跳绳成绩,从该市七年级学生中随机抽取100名学生进行调查,以下说法正确的是()A.这100名七年级学生是总体的一个样本 B.该市七年级学生是总体C.该市每位七年级学生的一分钟跳绳成绩是个体 D.100名学生是样本容量6、已知正比例函数的函数值随x的增大而增大,则一次函数的图像经过()A.第一、二、三象限 B.第一、三、四象限C.第一、二、四象限 D.第二、三、四象限7、一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是()A.360° B.900° C.1440° D.1800°第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,四边形是菱形,与相交于点,添加一个条件:________,可使它成为正方形.2、当光线射到x轴进行反射,如果反射的路径经过点A(0,1)和点B(3,4),则入射光线所在直线的解析式为____________.3、某工厂有甲、乙、丙、丁四个不同的车间生产电子元件,由于生产设备不同,工人在不同车间日生产量也不一定相同,但皆为整数.某日,该工厂接到一批生产订单,工厂老板想将工人合理分配到不同车间,已知甲车间的工人数与乙车间相同,丙车间的工人数是丁车间的倍且比甲车间工人数多,甲车间与丁车间的工人数之和不少于人且不超过人;甲车间与丁车间每个工人的日生产量相同,乙车间每个工人的日生产量为丙车间每个工人日生产量的倍,甲车间与丙车间每个工人的日生产量之和为件,且甲车间每个工人的日生产量不低于丙车间每个工人日生产量的且不超过件;甲车间、丙车间的日生产之和比乙车间、丁车间的日生产之和少件.则当甲、丙两车间当日生产量之和最多时,该工厂调配前往甲车间的人数为__________人.4、已知点,则点到轴的距离为______,到轴的距离为______.5、根据如图所示的程序计算函数值,若输入x的值为,则输出的y值为_.6、已知M(1,a)和N(2,b)是一次函数y=-x+1图像上的两点,则a______b(填“>”、“<”或“=”).7、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.8、函数y=中自变量x的取值范围是______.三、解答题(7小题,每小题10分,共计70分)1、如图,矩形ABCD的对角线AC、BD相交于点O,AB=5cm,∠BOC=120°,求矩形对角线的长.2、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.(1)若,则点,,的坐标分别是(),(),();(2)若△是以为底的等腰三角形,①直接写出的值;②若直线与△有公共点,求的取值范围.(3)若直线与△有公共点,求的取值范围.3、为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?4、为了解某种小西红柿的挂果情况,科技小组从试验田随机抽取了部分西红柿秧进行了统计,按每株挂果的数量x分成五组:A.,B.,C.,D.,E..并根据调查结果给制了如下不完整的统计图.请结合统计图解答下列问题:(1)本次调查一共随机抽取了__________株西红柿秧.扇形统计图中D组所对应的圆心角的度数为______度;(2)补全频数分布直方图;(3)若该试验田共种植小西红柿2000株,请估计挂果数量在E组的小西红柿株数.5、为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表:普通板栗(件)精品板栗(件)总金额(元)甲购买情况23350乙购买情况41300(1)求普通板栗和精品板栗的单价分别是多少元.(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a件(),则4000件板栗的销售总利润为w元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?6、已知A、B两地相距3km,甲骑车匀速从A地前往B地,如图表示甲骑车过程中离A地的路程y甲(km)与他行驶所用的时间x(min)之间的关系.根据图像解答下列问题:(1)甲骑车的速度是km/min;(2)若在甲出发时,乙在甲前方1.2km的C处,两人均沿同一路线同时匀速出发前往B地,在第4分钟甲追上了乙,两人到达B地后停止.请在下面同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图像;(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.7、已知一次函数y=-x+2.(1)求这个函数的图像与两条坐标轴的交点坐标;(2)在平面直角坐标系中画出这个函数的图像;(3)结合函数图像回答问题:①当x>0时,y的取值范围是;②当y<0时,x的取值范围是.-参考答案-一、单选题1、D【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.【详解】∵将点A(﹣3,﹣2)向右平移5个单位长度,∴平移后的点的横坐标为-3+5=2,∴平移后的点的坐标为(2,-2),故选:D.【点睛】此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.2、C【解析】【分析】点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.【详解】解:点K为直线l:y=2x+4上一点,设将点K向下平移2个单位,再向左平移a个单位至点K1,将点K1向上平移b个单位,向右平1个单位至点K2,点K2也恰好落在直线l上,整理得:故选C【点睛】本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.3、C【解析】【分析】由折叠的性质得到,由长方形的性质得到,根据角的和差倍分得到,整理得,最后根据解题.【详解】解:折叠,是矩形故选:C.【点睛】本题考查角的计算、折叠性质、数形结合思想等知识,是重要考点,掌握相关知识是解题关键.4、B【解析】【分析】根据30°角所对的直角边等于斜边的一半得出O1A1=OA1=1,O2A2=O1A2=()1,O3A3=O2A3=()2,即点A1的纵坐标为1;点A2的纵坐标为(),点A3的纵坐标为()2,以此类推,从中得出规律,即可求出答案.【详解】解:∵三角形OAA1是等边三角形,∴OA1=OA=2,∠AOA1=60°,∴∠O1OA1=30°.在直角△O1OA1中,∵∠OO1A1=90°,∠O1OA1=30°,∴O1A1=OA1=1,即点A1的纵坐标为1,同理,O2A2=O1A2=()1,O3A3=O2A3=()2,即点A2的纵坐标为()1,点A3的纵坐标为()2,…∴点A2023的纵坐标为()2022.故选:B.【点睛】此题考查了规律型:点的坐标,等边三角形的性质,解答此题的关键是通过认真分析,根据30°角所对的直角边等于斜边的一半,从中发现规律.5、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.这100名七年级学生的一分钟跳绳成绩是总体的一个样本,故该选项不符合题意;B、该市七年级学生的一分钟跳绳成绩是总体,故该选项不符合题意;C、该市每位七年级学生的一分钟跳绳成绩是个体,故该选项符合题意;D、样本容量是100,故该选项不符合题意;故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6、C【解析】【分析】由正比例函数的函数值随x的增大而增大,可得结合可得的图象经过一,二,四象限,从而可得答案.【详解】解:正比例函数的函数值随x的增大而增大,则一次函数的图像经过一,二,四象限,故选C【点睛】本题考查的是正比例函数图象的性质,一次函数的图象与性质,掌握“一次函数的图象与性质”是解本题的关键.7、C【解析】【分析】设每一个外角都为x,则相邻的内角为4x,然后根据“邻补角和为180°”列方程求得外角的大小,然后再根据多边形外角和定理求得多边形边数,最后运用多边形内角和公式求解即可.【详解】解:设每一个外角都为x,则相邻的内角为4x,由题意得,4x+x=180°,解得:x=36°,多边形的外角和为360°,360°÷36°=10,所以这个多边形的边数为10,则该多边形的内角和是:(10﹣8)×180=1440°.故选:C.【点睛】本题主要考查了多边形内角和相邻外角的关系、多边形的外角和、多边形内角和等知识点,掌握多边形的外角和为360°是解答本题的关键.二、填空题1、【解析】【分析】根据“有一个角是直角的菱形是正方形”可得到添加的条件.【详解】解:由于四边形是菱形,如果,那么四边形是正方形.故答案为:.【点睛】本题考查了正方形的判定,解决本题的关键是熟练掌握正方形的判定定理.2、【解析】【分析】根据题意得:入射光线所在直线和反射光线所在直线关于轴对称,可得入射光线所在直线经过点A(0,-1)和点B(3,-4),即可求解.【详解】解:根据题意得:入射光线所在直线和反射光线所在直线关于轴对称,∵反射的路径经过点A(0,1)和点B(3,4),∴入射光线所在直线经过点A(0,-1)和点B(3,-4),设入射光线所在直线的解析式为,根据题意得:,解得:,∴入射光线所在直线的解析式为.故答案为:【点睛】本题主要考查了求一次函数解析式,根据题意得到入射光线所在直线和反射光线所在直线关于轴对称是解题的关键.3、21【解析】【分析】根据题意设甲、乙、丙、丁车间的人数分别为人,甲、乙、丙、丁车间的日生产量分别为,则根据甲车间、丙车间的日生产之和比乙车间、丁车间的日生产之和少件,转化为只含有的方程,进而根据因式分解化简得,根据不等式求得的范围,根据是整数,即可求得的值,进而求得,根据题意列出代数式,并根据一次函数的性质求得当时,取得最大值,即可求得的值,即可解决问题.【详解】根据题意设甲、乙、丙、丁车间的人数分别为人,甲、乙、丙、丁车间的日生产量分别为,则,,,即又即即解得是整数,即是整数设甲、丙两车间当日生产量之和为:则,则当最大时,取得最大值即时,取得最大值此时故答案为:21【点睛】本题考查了方程组的应用,一元一次不等式的应用,一次函数的性质求最值问题,理清题中各关系量是解题的关键.4、23【解析】【分析】点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值,据此即可得答案.【详解】∵点的坐标为,∴点到轴的距离为,到轴的距离为.故答案为:2;3【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.5、##【解析】【分析】根据x的值选择相应的函数关系式求解函数值即可解答.【详解】解:∵x=,∴1<x<2,∴y=-x+2=-+2=,即输出的y值为,故答案为:.【点睛】本题考查求一次函数的函数值,明确每段函数的自变量取值范围是解答的关键.6、>【解析】【分析】由M(1,a)和N(2,b)是一次函数y=-x+1图象上的两点,利用一次函数图象上点的坐标特征可求出a,b的值,比较后即可得出结论.【详解】解:当x=1时,a=-1+1=0;当x=2时,b=-2+1=-1.∵0>-1,∴a>b.故答案为:>.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.7、【解析】【分析】根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.【详解】∵直线与相交于点∴的坐标既满足,也满足∴是方程组的解故答案为:【点睛】本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.8、x1且x-3【解析】【分析】根据分母不为0,被开方数大于等于0,进行计算即可.【详解】解:由题意得:1-x0,且x+30,∴x1且x-3,故答案为:x1且x-3.【点睛】本题考查了自变量的取值范围,熟练掌握此函数关系式中分母不为0,被开方数大于等于0是解题的关键.三、解答题1、10cm【解析】【分析】根据矩形性质得出∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,推出OA=OB,求出等边三角形AOB,求出OA=OB=AB=5,即可得出答案.【详解】解:∵∠BOC=120°,∴∠AOB=180°﹣120°=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=5cm,∴OA=OB=AB=5cm,∴AC=2AO=10cm,BD=AC=10cm.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.2、(1)-3,3,1,3,-3,-1(2)①-2;②(3)或【解析】【分析】(1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;(2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;(3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.(1)解:,,,轴.以为对角线时,四边形是平行四边形,,,将向左平移2个单位长度可得,即;以为对角线时,四边形是平行四边形,,,将向右平移2个单位长度可得,即;以为对角线时,四边形是平行四边形,对角线的中点与的中点重合,的中点为,,.故答案为:,,;(2)解:①如图,若△是以为底的等腰三角形,四边形,,是平行四边形,,,,、、在同一直线上,、、在同一直线上,,是等腰三角形△的中位线,,,,,,,;②由①得,,.当直线过点时,,解得:,当直线过点时,,解得:,的取值范围为;(3)解:如图,,,,,.连接、交于点,四边形是平行四边形,点、关于点对称,,直线与△有公共点,当直线与△交于点,,解得:,时,直线与△有公共点;当直线与△交于点,,解得:,时,直线与△有公共点;综上,的取值范围为或.【点睛】本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.3、(1)今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元(2)1800万【解析】【分析】(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,根据题意列出二元一次方程组,解方程组求解即可;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,列出一元一次不等式组求得的范围,进而设明年需投入W万元,根据题意列出W关于的关系式,根据一次函数的性质求得最小值即可求解.(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意得:y−x=0.6500x+200y=960解得:x=1.2答:今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,由题意可得:1.8(1100-m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100-m)=-0.3m+1980,∵-0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值-0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出二元一次方程组、不等式以及一次函数关系式是解题的关键.4、(1)50,144(2)见解析(3)160【解析】【分析】(1)根据C组数量和所占百分比可求出总数,再根据D组数量可以得到D组所对应的圆心角的度数;(2)根据(1)中的结果可以将直方图补充完整;(3)用2000乘以E所占的百分比,可以计算出挂果数量在E组的小西红柿株数.(1)解:18÷36%=50株,50-2-6-18-4=20株,;故答案为:50,144;(2)解:如图,(3)解:株.【点睛】本题考查频数分布直方图、频数分布表、扇形统计图、用样本估计总体,解答本题的关键是明确题意.利用数形结合的思想解答.5、(1)普通板栗的单价为55元,精品板栗的单价为80元;(2)普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.【解析】【分析】(1)设普通板栗的单价为x元,精品板栗的单价为y元,根据表格列出二元一次方程组,求解即可得;(2)加工普通板栗a(1000≤a≤3000)件,则加工精品板栗(4000−a)件,根据题意可得利润的函数关系式w=−5a+80000,根据一次函数的性质及自变量的取值范围可得当a=1000时,所获总利润w最多,代入求解即可得.(1)解:设普通板栗的单价为x元,精品板栗的单价为y元,由题意得:2x+3y=3504x+y=300解得x=55y=80答:普通板栗的单价为55元,精品板栗的单价为80元;(2)解:加工普通板栗a(1000≤a≤3000)件,则加工精品板栗(4000−a)件,由题意得:w=55−40∵−5<0,1000≤a≤3000,∴当a=1000时,所获总利润w最多,w=−5×1000+80000=75000,∴4000−a=3000,答:普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论