重难点解析浙江省江山市中考数学真题分类(数据分析)汇编同步训练试卷(含答案详解版)_第1页
重难点解析浙江省江山市中考数学真题分类(数据分析)汇编同步训练试卷(含答案详解版)_第2页
重难点解析浙江省江山市中考数学真题分类(数据分析)汇编同步训练试卷(含答案详解版)_第3页
重难点解析浙江省江山市中考数学真题分类(数据分析)汇编同步训练试卷(含答案详解版)_第4页
重难点解析浙江省江山市中考数学真题分类(数据分析)汇编同步训练试卷(含答案详解版)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省江山市中考数学真题分类(数据分析)汇编同步训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、小明得到数学课外兴趣小组成员的年龄情况统计如下表:年龄(岁)13141516人数(人)215那么对于不同的值,则下列关于年龄的统计量不会发生变化的是(

)A.平均数、方差 B.中位数、方差C.平均数、中位数 D.众数、中位数2、九(1)班选派4名学生参加演讲比赛,他们的成绩如下:选手ABCD平均成绩中位数成绩/分86■828885■则如表中被遮盖的两个数据从左到右依次是()A.84,86 B.84,85 C.82,86 D.82,873、下表是某校合唱团成员的年龄分布,对于不同的,下列关于年龄的统计量不会发生改变的是(

)年龄/岁13141516频数515A.平均数、中位数 B.众数、中位数 C.平均数、方差 D.中位数、方差4、某校为加强学生出行的安全意识,学校每月都要对学生进行安全知识测评,随机选取15名学生在五月份的测评成绩如表:成绩(分)909195969799人数(人)232431则这组数据的中位数和众数分别为(

)A.95,95 B.95,96 C.96,96 D.96,975、在2019年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、平均数依次是(

)A.48,48,48 B.48,47.5,47.5C.48,48,48.5 D.48,47.5,48.56、甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克糖果混在一起,则售价应定为每千克(

)A.6.7元 B.6.8元 C.7.5元 D.8.6元7、某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如表所示:读书时间(小时)7891011学生人数691096关于该班学生一周读书时间的数据有下列说法:①一周读书时间数据的中位数是9小时;②一周读书时间数据的众数是10小时;③一周读书时间数据的平均数是9小时;④一周读书时间不少于9小时的人数占抽查学生的50%.其中说法正确的序号是(

)A.①②③ B.①②④ C.②③④ D.①③8、某同学使用计算器求15个数据的平均数时,错将一个数据15输成105,那么由此求出的平均数与实际平均数的差是()A.6.5 B.6 C.0.5 D.-6第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、一组数据由5个数组成,其中4个数分别为2,3,4,5且这组数据的平均数为4,则这组数据的中位数为________.2、小明用计算一组数据的方差,那么=____.3、下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:甲乙丙丁平均数(cm)561560561560方差s2(cm2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____.4、根据第七次全国人口普查,华东六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.5、某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这个数据的平均数等于______.6、如果样本方差,那么这个样本的平均数是_______,样本容量是________.7、某外贸公司要出口一批规格为克/盒的红枣,现有甲、乙两个厂家提供货源,它们的价格相同,品质也相近.质检员从两厂的产品中各随机抽取盒进行检测,测得它们的平均质量均为克,每盒红枣的质量如图所示,则产品更符合规格要求的厂家是__________.(填“甲”或“乙”)三、解答题(7小题,每小题10分,共计70分)1、为了调查学生对垃圾分类知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制,单位:分),并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息.a.甲、乙两校学生样本成绩频数分布表及扇形统计图如图:甲校学生样本成绩频数分布表(表1)成绩(分)频数频率0.1040.2070.352合计201.0b.甲、乙两校学生样本成绩的平均分、中位数、众数、方差如表所示:(表2)学校平均分中位数众数方差甲76.77789150.2乙78.180135.3其中,乙校20名学生样本成绩的数据如下:54

72

62

91

87

69

88

79

80

62

80

84

93

67

87

87

90

71

68

91请根据所给信息,解答下列问题:(1)表1中________;表2中的众数_________;(2)在此次测试中,某学生的成绩是79分,在他所属学校排在前10名,由表中数据可知该学生是______校的学生(填“甲”或“乙”),理由是_____________________;(3)乙校学生样本成绩扇形统计图中,这一组成绩所在扇形的圆心角度数是__________度;(4)若甲、乙两校各有1000名学生参加此次测试,成绩80分及以上为优秀,请计算两校成绩优秀的学生大约共为多少人?2、为了解某学校疫情期向学生在家体有锻炼情况,从全体学生中机抽取若干名学生进行调查.以下是根据调查数据绘刺的统计图丧的一部分,根据信息回答下列问题.组别平均每日体育锻炼时间(分)人数A9B___________C21D12(1)本次调查共抽取__________名学生.(2)抽查结果中,B组有__________人.(3)在抽查得到的数据中,中位数位于__________组(填组别).(4)若这所学校共有学生800人,则估计平均每日锻炼超过25分钟有多少人?3、嘉嘉和淇淇两名同学进行射箭训练,分别射箭五次,部分成绩如折线统计图所示,已知两人这五次射箭的平均成绩相同.(1)规定射箭成绩不低于9环为“优秀”,求嘉嘉射箭成绩的优秀率.(2)请补充完整折线统计图;(3)设淇淇五次成绩的众数为a环,若嘉嘉补射一次后,成绩为b环,且嘉嘉六次射箭成绩的中位数恰好也是a环,求b的最大值.4、在第二十二届深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图.请根据相关信息,解答下列问题:(1)该校抽查八年级学生的人数为,图中的值为;(2)请将条形统计图补充完整;(3)求被抽查的学生每天平均课外阅读时间的众数、中位数和平均数;(4)根据统计的样本数据,估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有多少人?5、某校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.(1)以下是两位同学关于抽样方案的对话:小红:“我想随机抽取七年级男、女生各60人的成绩.”小明:“我想随机抽取七、八、九年级男生各40人的成绩.”根据如图学校信息,请你简要评价小红、小明的抽样方案.如果你来抽取120名学生的测试成绩,请给出抽样方案.(2)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数.6、为庆祝中国共产党成立100周年,某校组织全校学生进行了一场党史知识竞赛活动根据竞赛结果,抽取了200名学生的成绩(得分均为正整数,满分为100分,大于80分的为优秀)进行统计,绘制了如图所示尚不完整的统计图表.200名学生党史知识竞赛成绩的频数表组别频数频率A组a0.3B组300.15C组50bD组600.3200名学生党史知识竞赛成绩的频数直方图请结合图表解决下列问题:(1)频数表中,_________,___________;(2)请将频数直方图补充完整;(3)抽取的200名学生中竞赛成绩的中位数落在的组别是__________组;(4)若该校共有1000名学生,请估计本次党史知识竞赛成绩为“优秀”的学生人数.7、某车间有工人15人,某月他们生产的零件个数统计如下表:生产零件的个数(个)60048022018012090工人人数(人)113334(1)求这15名工人该月生产零件的平均个数;(2)为了调动工人的积极性,决定实行目标管理,对完成目标的工人进行适当的奖励.如果想让一半左右的工人都能获得奖励,请你从平均数、中位数、众数的角度进行分析,该如何确定月生产目标?-参考答案-一、单选题1、D【解析】【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【详解】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10,则总人数为:2+15+10=27,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:D.【考点】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.2、B【解析】【分析】根据平均成绩可得B的成绩,再求出中位数,即可求解.【详解】解:根据题意可得:B的成绩=85×4﹣86﹣82﹣88=84,∴4人的成绩从小到大排列为82、84、85、86、88,∴中位数为85,故选:B.【考点】本题主要考查了求中位数,根据平均数求相关数据,熟练掌握平均数和中位数的求法是解题的关键.3、B【解析】【分析】由频数分布表可知后两组的频数和为11,即可得知总人数,结合前两组的频数可知出现次数最多的数据及第16个数据,可得答案.【详解】解:由表可知,年龄为15岁与年龄为16岁的频数和为:x+11-x=11,∴总人数为:5+15+11=31(人),∵年龄为14岁的频数最多,∴该组数据的众数为14岁;∵按照从小到大的顺序,第16个数据是14岁,∴该组数据的中位数为:14岁;∴对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数.故选:B.【考点】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.4、C【解析】【分析】根据中位数、众数的意义分别求出中位数、众数即可.【详解】解:将这15名学生成绩从小到大排列,处在中间位置的一个数,即第8个数是96,因此中位数是96,这15名学生成绩出现次数最多的是96,共出现4次,因此众数是96,故选:C.【考点】本题考查中位数、众数,理解中位数、众数的意义是解决问题的前提,掌握众数、中位数的计算方法是解决问题的关键.5、A【解析】【分析】根据众数、中位数的定义和平均数公式分别进行解答即可.【详解】解:这组数据中48出现的次数最多,则这组数据的众数是48;把这组数据按从小到大排列,最中间两个数的平均数是(48+48)÷2=48,则中位数是48;这组数据的平均数是(47×2+48×3+50)÷6=48,故选:A.【考点】本题考查了众数、中位数和平均数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n个数据,x1,x2,…xn的平均数为.6、B【解析】【详解】由题意可得:(元).故选B.7、D【解析】【分析】根据统计表给出的数据求出一个班级的学生总数,再根据中位数、众数、平均数以及百分比的定义分别进行解答即可.【详解】解:这个班级的学生总数是:6+10+9+8+7=40(人),则该班学生一周读书时间数据的中位数是:(9+9)÷2=9(小时),说法①正确;众数是:9小时,说法②错误;平均数是:(7×6+8×10+9×9+10×8+11×7)=9(小时),说法③正确;一周读书时间不少于9小时的人数占抽查学生的百分比为:×100%=62.5%,说法④错误.故选:D.【考点】此题考查了平均数、众数和中位数,熟练掌握定义是解题的关键.8、B【解析】【详解】求15个数据的平均数时,错将其中一个数据15输入为105,即使总和增加了90;那么由二、填空题1、4【解析】【分析】先根据算术平均数的概念求出另外一个数据,从而得出这组数据,再利用中位数的概念求解可得.【详解】解:根据题意知,另外一个数为5×4-(2+3+4+5)=6,所以这组数据为2、3、4、5、6,所以这组数据的中位数为4,故答案为:4【考点】本题主要考查中位数和算术平均数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、30【解析】【分析】由方差的计算可得这组数据的平均数,然后利用平均数的计算方法求解.【详解】解:由题意可得,这组数据共10个数,且它们的平均数是3∴=10×3=30故答案为:30.【考点】此题主要考查了方差与平均数的计算,关键是正确掌握方差的计算公式.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=.3、甲【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵,∴从甲和丙中选择一人参加比赛,∵,∴选择甲参赛,故答案为甲.【考点】此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、【解析】【分析】由图,将六省60岁及以上人口占比由小到大排列好,共有6个数,所以中位数等于中间两个数之和除以二.【详解】解:由图,将六省人口占比由小到大排列为:,由中位数的定义得:人口占比的中位数为,故答案为:.【考点】本题考查了求解中位数,解题的关键是:将数由小到大排列,根据数的个数分为两类.当个数为奇数时,中位数等于最中间的数;当个数为偶数个时,中位数等于中间两个数之和除以2.5、.【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【考点】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.6、

18

20【解析】【分析】先根据方差公式中所有字母所代表的意义,n是样本容量,是样本中的平均数,再结合给出的式子即可得出答案.【详解】解:在公式中,平均数是,样本容量是n,在中,这个样本的平均数为18,样本容量为20.故答案为:18;20.【考点】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7、甲【解析】【分析】先由题干条件得出两厂红枣价格相同,品质也相近,平均质量相同,再根据方差判定它们的稳定性,越稳定的则越符合.【详解】解:由题可知,它们的价格相同,品质也相近,测得它们的平均质量均为200克,而由图形可知,甲厂的红枣每盒质量相对乙厂更加稳定,因此甲厂产品更符合规格要求,故答案为:甲.【考点】本题考查了方差的应用,解决本题的关键是读懂题意和图形,能根据图形判定产品的波动性大小并进行比较等,本题较基础,考查了学生读题、审题以及观察图形的能力等.三、解答题1、(1)0.25,87;(2)甲;见解析;(3)54;(4)1000.【解析】【分析】(1)由表格中数据可知,90≤m<100的频数为2,频率d=2÷20=0.1,再根据频率之和为1,求出c即可;根据众数的意义可求出乙班的众数n,(2)根据中位数的意义,79分处在班级成绩的中位数以上,可得出答案;(3)扇形统计图中,70≤m<80这一组占整体的1-5%-20%-35%-25%=15%,因此所在扇形的圆心角度数为360°的15%;(4)样本估计总体,分别求出两校优秀的人数,然后相加即可得.【详解】(1)d=2÷20=0.1,c=1-0.1-0.1-0.2-0.35=0.25,乙班成绩出现次数最多的数是87分,共出现3次,因此乙班的众数为87,故答案为:0.25,87;(2)甲,因为该学生的成绩是79分,略高于甲校的样本成绩数据的中位数77分,符合该生的成绩在甲校排名是前10名的要求;(3)360°×(1-5%-20%-35%-25%)=360°×15%=54°,故答案为:54;(4)甲校优秀人数:1000×(0.35+0.1)=450(人),乙校优秀人数:1000×(35%+20%)=550(人),450+550=1000,故答案为:1000.【考点】考查中位数、众数、平均数、方差、扇形统计图、频数分布表的意义,理解各个概念的意义是正确解答的前提.2、(1)60(2)18(3)C(4)440【解析】【分析】(1)用D组的人数除以其所占百分比可得;(2)总人数减去其他类别人数即可求得B组的人数;(3)根据中位数的定义即可求解;(4)用总人数乘样本中平均每日锻炼超过25分钟的人数所占比例即可求解.(1)解:本次调查共12÷20%=60(人),故答案是:60;(2)解:抽查结果中,B组有60-(9+21+12)=18(人),故答案是:18;(3)解∵共有60个数据,其中位数是第30、31个数据的平均数,而第30、31个数据均落在C组,∴在抽查得到的数据中,中位数位于C组,故答案是:C;(4)解:800=440(人),答:平均每日锻炼超过25分钟有440人.【考点】本题考查频数(率)分布表、扇形统计图、样本估计总体等知识,解题的关键是根据频数分步图和扇形统计图的关联信息求出被调查学生的总数.3、(1)60%;(2)补全图形见解析;(3)7.【解析】【分析】(1)找出嘉嘉射箭成绩不低于9环有几次,再除以总次数即可.(2)求出嘉嘉的平均成绩,结合题意可知淇淇的平均成绩,设淇淇最后一次成绩为m,利用求平均数公式即列出关于m的等式,求出m,即可补全统计图.(3)根据众数的定义可求出a的值,即可知嘉嘉六次射箭成绩的中位数,结合中位数的定义,按由大到小或由小到大排列时只有7环和9环相邻时中位数才是8,故可得出,即确定b的最大值.【详解】(1)根据统计图可知嘉嘉射箭不低于9环的有3次,故嘉嘉射箭成绩的优秀率为.(2)嘉嘉的平均成绩为环设淇淇最后一次成绩为m,∴淇淇的平均成绩为由题意可知,即,解得:m=8.故淇淇最后一次成绩为8,由此,补全折线统计图如下:(3)淇淇射击5次中8环出现了3次,∴a=8,∴嘉嘉六次射箭成绩的中位数是8环,嘉嘉射箭前5次由小到大排列为:5,7,9,9,10.∵,∴当时,才能保证嘉嘉六次射箭成绩的中位数是8环.故b的最大值为7.【考点】本题考查折线统计图,平均数,众数,中位数.从统计图中得到必要的信息且掌握求平均数的公式,众数和中位数的定义是解答本题的关键.4、∴这组数据的平均数是5.∵在这组数据中,6出现了16次,出现的次数最多,∴这组数据的众数为6.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是6,即有,∴这组数据的中位数为6.【考点】本题考查条形统计图与扇形统计图相关联,加权平均数,中位数以及众数.从条形统计图与扇形统计图中找到必要的数据和信息是解答本题的关键.9.(1)100,18;(2)见解析;(3)(4)72人【解析】【分析】(1)根据每天平均课外阅读时间为1小时的占30%,共30人,即可求得总人数;(2)根据总数减去其他三项即可求得每天平均课外阅读时间为1.5小时的人数进而补充条形统计图;(3)根据条形统计图可知阅读时间为1.5小时的人数最多,故学生每天平均课外阅读时间的众数为1.5,根据第50和51个都落在阅读时间为1.5小时的范围内,即可求得中位数为1.5,根据求平均数的方法,求得100个学生阅读时间的平均数(4)根据扇形统计图可知,每天平均课外阅读时间为2小时的比例为,400乘以18%即可求得.【详解】(1)总人数为:(人);故答案为:(2)每天平均课外阅读时间为1.5小时的人数为:(人)补充条形统计图如下:(3)根据条形统计图可知抽查的学生每天平均课外阅读时间的众数为1.5中位数为1.5,平均数为;(4)(人)估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有人【考点】本题考查了条形统计图与扇形统计图信息关联,求众数、中位数和平均数,样本估算总体,从统计图中获取信息是解题的关键.5、(1)见解析(2)这组数据的平均数是2.75分、中位数是3分,众数是3分【解析】【分析】(1)根据小红和小明抽样的特点进行分析评价即可;(2)根据中位数、众数的意义求解即可.(1)解:两人都能根据学校信息合理选择样本容量进行抽样调查,小红的方案考虑到性别的差异,但没有考虑年级学段的差异,小明的方案考虑到了年级特点,但没有考虑到性别的差异,他们抽样调查不具有广泛性和代表性;(2)解:平均数为(分),抽查的120人中,成绩是3分出现的次数最多,共出现45次,因此众数是3分;将这120人的得分从小到大排列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论