




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期中试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(7小题,每小题2分,共计14分)1、直线不经过第二象限,则关于的方程实数解的个数是(
).A.0个 B.1个 C.2个 D.1个或2个2、已知关于x的方程有一个根为1,则方程的另一个根为(
)A.-1 B.1 C.2 D.-23、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是(
)A. B. C. D.4、下列一元二次方程中,有两个不相等实数根的是(
)A. B.x2+2x+4=0 C.x2-x+2=0 D.x2-2x=05、已知四边形ABCD是平行四边形,下列结论:①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形,其中错误的有(
)A.1个 B.2个 C.3个 D.4个6、如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为(
)A.4 B.4.8 C.5 D.5.57、如图,为△的中位线,点在上,且;若,则的长为(
)A.2 B.1 C.4 D.3二、多选题(3小题,每小题2分,共计6分)1、下列方程中,是一元二次方程的是()A. B. C. D.2、下列方程中,是一元二次方程的是(
)A. B. C. D.3、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是(
)A. B. C.3 D.5第Ⅱ卷(非选择题80分)三、填空题(10小题,每小题2分,共计20分)1、如图,在ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA,下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是菱形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AB=AC,那么四边形AEDF是菱形.其中,正确的有_____.(只填写序号)2、如果关于x的方程有两个相等的正实数根,那么m的值为____________.3、已知一元二次方程ax2+bx+c=0(a≠0),下列结论:①若方程两根为-1和2,则2a+c=0;②若b>a+c,则方程有两个不相等的实数根;③若b=2a+3c,则方程有两个不相等的实数根;④若m是方程的一个根,则一定有b2-4ac=(2am+b)2成立.其中结论正确的序号是__________.4、从2、6、9三个数字中任选两个,用这两个数字分别作为十位数和个位数组成一个两位数,在所有得到的两位数中随机抽取一个两位数,这个两位数是4的倍数的概率是____.5、如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.6、将正方形OEFG放在平面直角坐标系中,O是坐标原点,若点E的坐标为,则点G的坐标为_____.7、写出一个一元二次方程,使它有两个不相等的实数根______.8、如图,在矩形纸片ABCD中,AB=12,AD=5,P为DC边上的动点(点P不与点D,C重合),将纸片沿AP折叠(1)当四边形ADPD′是正方形时,CD′的长为___.(2)当CD′的长最小时,PC的长为___.9、如图,正方形ABCD的边长为6,点E在边CD上.以点A为中心,把△ADE顺时针旋转90°至△ABF的位置.若DE=2,则FE=___.10、如图,点E是菱形ABCD边AB的中点,点F为边AD上一动点,连接EF,将△AEF沿直线EF折叠得到△A'EF,连接A'D,A'C.已知BC=4,∠B=120°,当△A'CD为直角三角形时,线段AF的长为______.四、解答题(6小题,每小题10分,共计60分)1、某服装店在销售中发现:进货价为每件50元,销售价为每件90元的某品牌服装平均每天可售出20件.现服装店决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件服装降价1元,那么平均每天就可多售出2件.(1)求销售价在每件90元的基础上,每件降价多少元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠?(2)要想平均每天盈利2000元,可能吗?请说明理由.2、解方程:(1);
(2).
(3).3、如图,已知在△ABC中AB=AC,AD是BC边上的中线,E,G分别是AC,DC的中点,F为DE延长线上的点,∠FCA=∠CEG.(1)求证:AD∥CF;(2)求证:四边形ADCF是矩形.4、如图,在平面直角坐标系中,点是坐标原点,四边形是菱形,点的坐标为,点在轴的正半轴上,直线交轴于点,边交轴于点,连接.(1)填空:菱形的边长_________;(2)求直线的解析式;(3)动点从点出发,沿折线方向以3个单位/秒的速度向终点匀速运动,设的面积为,点的运动时间为秒,①当时,求与之间的函数关系式;②在点运动过程中,当,请直接写出的值.5、解下列方程.(1)x2+2x=0;(2)2x2-3x-1=0.6、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.(1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);(2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.-参考答案-一、单选题1、D【解析】【分析】根据直线不经过第二象限,得到,再分两种情况判断方程的解的情况.【详解】∵直线不经过第二象限,∴,∵方程,当a=0时,方程为一元一次方程,故有一个解,当a<0时,方程为一元二次方程,∵∆=,∴4-4a>0,∴方程有两个不相等的实数根,故选:D.【考点】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a的取值范围,再分类讨论.2、C【解析】【分析】根据根与系数的关系列出关于另一根t的方程,解方程即可.【详解】解:设关于x的方程的另一个根为x=t,∴1+t=3,解得,t=2故选:C.【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.3、C【解析】【分析】利用列表法或树状图即可解决.【详解】分别用r、b代表红色帽子、黑色帽子,用R、B、W分别代表红色围巾、黑色围巾、白色围巾,列表如下:RBWrrRrBrWbbRbBbW则所有可能的结果数为6种,其中恰好为红色帽子和红色围巾的结果数为1种,根据概率公式,恰好为红色帽子和红色围巾的概率是.故选:C.【考点】本题考查了简单事件的概率,常用列表法或画树状图来求解.4、D【解析】【分析】逐一分析四个选项中方程的根的判别式的符号,由此即可得出结论.【详解】A.此方程判别式,方程有两个相等的实数根,不符合题意;B.此方程判别式方程没有实数根,不符合题意;C.此方程判别式,方程没有实数根,不符合题意;D.此方程判别式,方程有两个不相等的实数根,符合题意;故答案为:D.【考点】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.5、A【解析】【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解:四边形是平行四边形,A、当时,它是菱形,选项不符合题意,B、当时,它是菱形,选项不符合题意,C、当时,它是矩形,选项不符合题意,D、当时,它是矩形,不一定是正方形,选项符合题意,故选:.【考点】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.6、B【解析】【分析】由垂线段最短,可得AP⊥BC时,AP有最小值,由菱形的性质和勾股定理可求BC的长,由菱形的面积公式可求解.【详解】如图,设AC与BD的交点为O,∵点P是BC边上的一动点,∴AP⊥BC时,AP有最小值,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴BC=,∵S菱形ABCD=×AC×BD=BC×AP,∴AP==4.8,故选:B.【考点】本题考查了菱形的性质,勾股定理,确定当AP⊥BC时,AP有最小值是本题关键.7、A【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,计算即可.【详解】∵DE为△ABC的中位线,∴DE=BC=5,∵∠AFB=90°,D是AB的中点,∴DF=AB=3,∴EF=DE-DF=2,故选A.【考点】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、多选题1、BCD【解析】【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A
,分母中含有未知数,是分式方程;
B
x2=x+1,是一元二次方程;C
7x2+3=0,是一元二次方程;
D
是一元二次方程.故选:BCD.【考点】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2、ABC【解析】【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A、是一元二次方程,故本选项符合题意;B、是一元二次方程,故本选项符合题意;C、是一元二次方程,故本选项符合题意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本选项不符合题意;故选:【考点】本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式.3、AC【解析】【分析】先解出一元二次方程,再根据勾股定理计算即可;【详解】,,∴或,当2、3是直角边时,斜边;∵,∴3可以是三角形斜边;故选AC.【考点】本题主要考查了一元二次方程的求解、勾股定理,准确计算是解题的关键.三、填空题1、①③【解析】【分析】根据平行四边形的判定和菱形的判定解答即可.【详解】解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形,故①正确;∵∠BAC=90°,四边形AEDF是平行四边形,∴四边形AEDF是矩形,故②错误;∵AD平分∠BAC,四边形AEDF是平行四边形,∴四边形AEDF是菱形,故③正确;∵AB=AC,四边形AEDF是平行四边形,不能得出AE=AF,故四边形AEDF不一定是菱形,故④错误;故答案为:①③.【考点】此题考查菱形的判定,关键是就平行四边形的判定和菱形的判定解答.2、4【解析】【分析】根据一元二次方程根的判别式即可求得或,再根据方程有两个相等的正实数根,可知两根之和为正数,据此即可解答.【详解】解:关于x的方程有两个相等的实数根解得或又关于x的方程有两个相等的正实数根两根之和为正数,即,解得故故答案为:4【考点】本题考查了一元二次方程根的判别式及根与系数的关系,熟练掌握和运用一元二次方程根的判别式及根与系数的关系是解决本题的关键解.3、①③④【解析】【分析】利用根与系数的关系判断①;由Δ=b2-4ac判断②;由判别式可判断③;将x=m代入方程得am2=-(bm+c),再代入=(2am+b)2变形可判断④.【详解】解:若方程两根为-1和2,则=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正确;由b>a+c不能判断Δ=b2-4ac值的大小情况,故②错误;若b=2a+3c,则Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有两个不相等的实数根,故③正确.若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正确;故答案为:①③④.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系及根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.4、【解析】【分析】画树状图,共有6种等可能的结果,在所有得到的两位数中随机抽取一个两位数,这个两位数是4的倍数的结果有2种,再由概率公式求解即可.【详解】解:画树状图如图:共有6种等可能的结果,在所有得到的两位数中随机抽取一个两位数,这个两位数是4的倍数的结果有2种,∴在所有得到的两位数中随机抽取一个两位数,这个两位数是4的倍数的概率为=,故答案为:.【考点】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.5、或##或【解析】【分析】连接,根据题意可得,当∠ADQ=90°时,分点在线段上和的延长线上,且,勾股定理求得即可.【详解】如图,连接,在Rt△ABC中,∠ACB=90°,,,,,根据题意可得,当∠ADQ=90°时,点在上,且,,如图,在中,,在中,故答案为:或.【考点】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点的位置是解题的关键.6、或【解析】【分析】先利用正方形的性质,利用旋转画出正方形OEFG,从而得到G点的坐标.【详解】把EO绕E点顺时针(或逆时针)旋转90°得到对应点为G(或G´),如图,则G点的坐标为(2,-3)或G′的坐标为(﹣2,3),【考点】本题考查坐标与图形的变换,涉及旋转、正方形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.7、x2+x﹣1=0(答案不唯一)【解析】【分析】这是一道开放自主题,只要写出的方程的Δ>0就可以了.【详解】解:比如a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=1+4=5>0,∴方程为x2+x﹣1=0.故答案为:x2+x﹣1=0(答案不唯一)【考点】本题考查了一元二次方程根的判别式,掌握“根的判别式大于0,方程有两个不相等的实数根”是解题的关键.8、
【解析】【分析】(1)根据四边形是正方形,得到从而得到再利用勾股定理求解即可得到答案;(2)如图:连接,运用矩形的性质和折叠的性质求出的最小值,再设,则,最后在中运用勾股定理解答即可【详解】解:(1)如图所示,∵四边形是正方形∴∵∴∵四边形ABCD是矩形∴,∠B=90°∴(2)如图:连接,当点在上时,有最小值.∵四边形是矩形,,,∴,,∴.由折叠性质,得,,∴的最小值.设,则.在中,,即,解得,∴的长为.故答案为:.【考点】本题主要考查矩形的性质和折叠的性质,正方形的性质,勾股定理,根据矩形的性质和折叠的性质确定的最小值成为解答本题的关键.9、【解析】【分析】由旋转的性质可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【详解】解:∵把△ADE顺时针旋转90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴点F,点B,点C共线,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根据勾股定理得:EF=,故答案为:.【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键.10、2或【解析】【分析】分当时和当时两种情况讨论求解即可.【详解】解:如图1所示,当时,取CD中点H,连接,∴,∵四边形ABCD是菱形,E为AB中点,∴,∠A=180°-∠B=60°,,由折叠的性质可知,,∴,连接EH,∵,∴四边形AEHD是平行四边形,∴,,∵由三角形三边的关系可知,当点不在线段EH上时,必有,这与矛盾,∴E、、H三点共线,∴,∴△AEF为等边三角形,∴;如图2所示,当时,连接BD,ED,过点F作FG⊥AB于G,∵∠ABC=120°,四边形ABCD是菱形,∴AB=AD,∠A=60°,∴△ABD是等边三角形,∵E是AB中点,∴DE⊥AB,∴∠ADE=30°,∴∠EDC=90°,∴此时三点共线,由翻折的性质可得,∵FG⊥AE,∠A=60°,∠AEF=45°,∴∠AFG=30°,∠GFE=45°,∴AF=2AG,EG=FG,∴,∵,∴,∴,故答案为:2或.【考点】本题主要考查了菱形的性质,等边三角形的性质与判定,折叠的性质,三角形三边的关系,含30度角的直角三角形的性质,平行四边形的性质与判定,直角三角形斜边上的中线等等,利用分类讨论的思想求解是解题的关键.四、解答题1、(1)每件降价20元(2)不可能,理由见解析【解析】【分析】(1)根据题意列出方程,即每件服装的利润×销售量=总盈利,再求解,把不符合题意的舍去;(2)根据题意列出方程进行求解即可.(1)解:设每件服装降价x元.由题意得:(90-x-50)(20+2x)=1200,解得:x1=20,x2=10,为使顾客得到较多的实惠,应取x=20;答:每件降价20元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠;(2)解:不可能,理由如下:依题意得:(90-x-50)(20+2x)=2000,整理得:x2-30x+600=0,Δ=(-30)2-4×600=900-2400=-1500<0,则原方程无实数解.则不可能每天盈利2000元.【考点】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.2、(1);(2);(3)【解析】【分析】(1)根据直接开平方法解方程;(2)利用配方法解方程;(3)根据分式方程的步骤化简为整式方程,再解一元二次方程.【详解】(1)解得(2)解得:(3)去分母得:解得:当时,当时,原方程的根为【考点】本题考查了解一元二次方程,解分式方程,掌握解方程的方法是解题的关键.3、(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先证EG是△ACD的中位线,得EG∥AD,再由∠FCA=∠CEG证出EG∥CF,即可得出结论;(2)先证△ADE≌△CFE(AAS),得AD=CF,则四边形ADCF是平行四边形,再由等腰三角形的在得∠ADC=90°,即可得出结论.【详解】解:(1)证明:∵E,G分别是AC,DC的中点,∴EG是△ACD的中位线,∴EG∥AD,∵∠FCA=∠CEG,∴EG∥CF,∴AD∥CF;(2)证明:由(1)得:AD∥CF,∴∠DAE=∠FCE,∠ADE=∠CFE,∵E是AC的中点,∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF,∴四边形ADCF是平行四边形,又∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠ADC=90°,∴平行四边形ADCF是矩形.【考点】本题考查了矩形的判定、平行四边形的判定与性质、等腰三角形的性质、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.4、(1)5(2)(3)①;②或【解析】【分析】(1)在Rt△AOH中利用勾股定理即可求得菱形的边长;(2)根据(1)即可求的OC的长,则C的坐标即可求得,利用待定系数法即可求得直线AC的解析式;(3)①根据S△ABC=S△AMB+SBMC求得M到直线BC的距离为h,然后分成P在AB上和在BC上两种情况讨论,利用三角形的面积公式求解.②将S=2代入①中的函数解析式求得相应的t的值.(1)解:点的坐标为,在Rt△AOH中,故答案为:5;(2)∵四边形ABCO是菱形,∴OC=OA=AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 融合课答辩题库及答案
- 2025河北邢台市信都区招聘中小学及中职教师130人考试参考试题及答案解析
- 2025年物理小球滚动题目及答案
- 2025浙江丽水市旅投酒店管理有限公司招聘备考练习试题及答案解析
- 2025年合肥师范附小教育集团长丰分校临聘教师公开招聘8名备考练习试题及答案解析
- 妊娠期高血压疾病试题(含答案)
- 2025年江苏中考数学试卷及答案
- 2025年作业改革试题及答案
- 2025年包装测试技术题目及答案
- 2025山东济宁学院招聘34人考试参考试题及答案解析
- 迎中秋庆国庆主题班会
- 初高中衔接数学教学的心得
- 2023-2024学年湖南省耒阳市小学语文六年级下册期末自测测试题
- 12YJ4-1 常用门窗标准图集
- GB/T 12190-1990高性能屏蔽室屏蔽效能的测量方法
- 高血压的危害-课件
- ISO15189医学实验室认可概况课件
- 轻钢龙骨、双层石膏板吊顶施工方案
- 安全网(平网)张挂安全技术要求
- 危险品管理台帐
- 政务云收费标准 云托管收费标准
评论
0/150
提交评论