中考数学总复习《 圆》全真模拟模拟题(夺冠)附答案详解_第1页
中考数学总复习《 圆》全真模拟模拟题(夺冠)附答案详解_第2页
中考数学总复习《 圆》全真模拟模拟题(夺冠)附答案详解_第3页
中考数学总复习《 圆》全真模拟模拟题(夺冠)附答案详解_第4页
中考数学总复习《 圆》全真模拟模拟题(夺冠)附答案详解_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《圆》全真模拟模拟题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为(

)A. B. C. D.2、如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠BCD=()A.105° B.110° C.115° D.120°3、如图,是⊙的直径,点C为圆上一点,的平分线交于点D,,则⊙的直径为(

)A. B. C.1 D.24、如图,点在上,,则(

)A. B. C. D.5、若某圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,那么圆锥的高为(

)A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,连接DF.若DF恰好是同圆的一个内接正多边形的一边,则这个正多边形的边数为_____.2、如图,四边形是正方形,曲线是由一段段90度的弧组成的.其中:的圆心为点A,半径为;的圆心为点B,半径为;的圆心为点C,半径为;的圆心为点D,半径为;…的圆心依次按点A,B,C,D循环.若正方形的边长为1,则的长是_________.3、如图,已知是的直径,是的切线,连接交于点,连接.若,则的度数是_________.4、如图,,,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则阴影部分的面积是________.5、一个扇形的弧长是,面积是,则这个扇形的圆心角是___度.三、解答题(5小题,每小题10分,共计50分)1、如图,点A,B,C,D在⊙O上,=.求证:(1)AC=BD;(2)△ABE∽△DCE.2、抛物线y=ax2+2x+c与x轴交于A(﹣1,0)、B两点,与y轴交于点C(0,3),点D(m,3)在抛物线上.(1)求抛物线的解析式;(2)如图1,连接BC、BD,点P在对称轴左侧的抛物线上,若∠PBC=∠DBC,求点P的坐标;(3)如图2,点Q为第四象限抛物线上一点,经过C、D、Q三点作⊙M,⊙M的弦QF∥y轴,求证:点F在定直线上.3、下列每个正方形的边长为2,求下图中阴影部分的面积.4、已知四边形内接于⊙O,,垂足为E,,垂足为F,交于点G,连接.(1)求证:;(2)如图1,若,,求⊙O的半径;(3)如图2,连接,交于点H,若,,试判断是否为定值,若是,求出该定值;若不是,说明理由.5、如图,在中,∠=45°,,以为直径的⊙与边交于点.(1)判断直线与⊙的位置关系,并说明理由;(2)若,求图中阴影部分的面积.-参考答案-一、单选题1、B【解析】【分析】设圆锥的底面的半径为rcm,则DE=2rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr,解方程求出r,然后求得直径即可.【详解】解:设圆锥的底面的半径为rcm,则AE=BF=6-2r根据题意得2πr,解得r=1,侧面积=,底面积=所以圆锥的表面积=,故选:B.【考点】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.2、C【解析】【分析】连接AC,然后根据圆内接四边形的性质,可以得到∠ADC的度数,再根据点D是弧AC的中点,可以得到∠DCA的度数,直径所对的圆周角是90°,从而可以求得∠BCD的度数.【详解】解:连接AC,∵∠ABC=50°,四边形ABCD是圆内接四边形,∴∠ADC=130°,∵点D是弧AC的中点,∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直径,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故选:C.【考点】本题考查圆周角定理、圆心角、弧、弦的关系,解答本题的关键是明确题意,利用数形结合的思想解答.3、B【解析】【分析】过D作DE⊥AB垂足为E,先利用圆周角的性质和角平分线的性质得到DE=DC=1,再说明Rt△DEB≌Rt△DCB得到BE=BC,然后再利用勾股定理求得AE,设BE=BC=x,AB=AE+BE=x+,最后根据勾股定理列式求出x,进而求得AB.【详解】解:如图:过D作DE⊥AB,垂足为E∵AB是直径∴∠ACB=90°∵∠ABC的角平分线BD∴DE=DC=1在Rt△DEB和Rt△DCB中DE=DC、BD=BD∴Rt△DEB≌Rt△DCB(HL)∴BE=BC在Rt△ADE中,AD=AC-DC=3-1=2AE=设BE=BC=x,AB=AE+BE=x+在Rt△ABC中,AB2=AC2+BC2则(x+)2=32+x2,解得x=∴AB=+=2故填:2.【考点】本题主要考查了圆周角定理、角平分线的性质以及勾股定理等知识点,灵活应用相关知识成为解答本题的关键.4、D【解析】【分析】先证明再利用等弧的性质及圆周角定理可得答案.【详解】解:点在上,,故选:【考点】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键.5、C【解析】【分析】设圆锥母线长为R,由题意易得圆锥的母线长为,然后根据勾股定理可求解.【详解】解:设圆锥母线长为R,由题意得:∵圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,∴根据圆锥侧面展开图的弧长和圆锥底面圆的周长相等可得:,∴,∴圆锥的高为;故选C.【考点】本题主要考查圆锥侧面展开图及弧长计算公式,熟练掌握圆锥的特征及弧长计算公式是解题的关键.二、填空题1、12【解析】【分析】连接OA、OD、OF,如图,利用正多边形与圆,分别计算⊙O的内接正四边形与内接正三角形的中心角得到∠AOD=90°,∠AOF=120°,则∠DOF=30°,然后计算即可得到n的值.【详解】解:连接OA、OD、OF,如图,设这个正多边形为n边形,∵AD,AF分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圆内接一个正十二边形的一边.故答案为:12.【考点】本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆;熟练掌握正多边形的有关概念.2、【解析】【分析】曲线是由一段段90度的弧组成的,半径每次比前一段弧半径+1,到,,再计算弧长.【详解】解:由图可知,曲线是由一段段90度的弧组成的,半径每次比前一段弧半径+1,,,……,,,故的半径为,的弧长=.故答案为:.【考点】此题主要考查了弧长的计算,弧长的计算公式:,找到每段弧的半径变化规律是解题关键.3、25【解析】【分析】先由切线的性质可得∠OAC=90°,再根据三角形的内角和定理可求出∠AOD=50°,最后根据“同弧所对的圆周角等于圆心角的一半”即可求出∠B的度数.【详解】解:∵是的切线,∴∠OAC=90°∵,∴∠AOD=50°,∴∠B=∠AOD=25°故答案为:25.【考点】本题考查了切线的性质和圆周角定理,掌握圆周角定理是解题的关键.4、【解析】【分析】连接CE,如图,利用平行线的性质得∠COE=∠EOB=90°,再利用勾股定理计算出OE=,利用余弦的定义得到∠OCE=60°,然后根据扇形面积公式,利用S阴影部分=S扇形BCE−S△OCE−S扇形BOD进行计算即可.【详解】解:连接CE,如图,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S阴影部分=S扇形BCE−S△OCE−S扇形BOD=,故答案为.【考点】本题考查了扇形面积的计算:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.5、150【解析】【分析】根据弧长公式计算.【详解】根据扇形的面积公式可得:,解得r=24cm,再根据弧长公式,解得.故答案为:150.【考点】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式,弧长公式.三、解答题1、(1)见解析(2)见解析【解析】【分析】(1)两个等弧同时加上一段弧后两弧仍然相等;再通过同弧所对的弦相等证明即可;(2)根据同弧所对的圆周角相等,对顶角相等即可证明相似.(1)∵=∴=∴∴BD=AC(2)∵∠B=∠C;∠AEB=∠DEC∴△ABE∽△DCE【考点】本题考查等弧所对弦相等、所对圆周角相等,掌握这些是本题关键.2、(1)(2)P(,)(3)证明见解析【解析】【分析】(1)把A、C坐标代入可得关于a、c的二元一次方程组,解方程组求出a、c的值即可得答案;(2)如图,设BP与y轴交于点E,直线解析式为,根据(1)中解析式可知D、B两点坐标,可得CD//AB,利用ASA可证明△DCB≌△ECB,可得CE=CD,即可得出点E坐标,利用待定系数法可得直线BP的解析式,联立直线BP与抛物线解析式求出交点坐标即可得答案;(3)如图,连接MD,MF,设Q(m,-m2+2m+3),F(m,t),根据CD、QF为⊙M的弦可得圆心M是CD、QF的垂直平分线的交点,即可表示出点M坐标,根据MD=MF,利用两点间距离公式可得()2+(2-1)2=(m-1)2+()2,整理可得t=2,即可得答案.(1)∵A(﹣1,0)、C(0,3)在抛物线y=ax2+2x+c图象上,∴,解得:,∴抛物线解析式为:.(2)如图,设BP与y轴交于点E,直线解析式为,∵点D(m,3)在抛物线上,∴,解得:,(与点C重合,舍去),∴D(2,3),∴CD//AB,CD=2,当y=0时,,解得:,,

∴B(3,0),∴OB=OC,∴∠OCB=∠OBC=∠DCB=45°,在△DCB和△ECB中,∵,∴△DCB≌△ECB,∴CE=CD=2,∴OE=OC-CE=1,∴E(0,1),∴,解得:,∴直线BP的解析式为,联立直线BP与抛物线解析式得:,解得:(舍去),,∴P(,).(3)如图,连接MD,MF,设Q(m,-m2+2m+3),F(m,t),∵CD、QF为⊙M的弦,∴圆心M是CD、QF的垂直平分线的交点,∵C(0,3),D(2,3),QF//y轴,∴M(1,),∵MD=MF,∴2+(2-1)2=(m-1)2+()2,整理得:t=2,∴点F在定直线y=2上.【考点】本题考查待定系数法求二次函数解析式、全等三角形的判定与性质、二次函数与一次函数的交点问题及圆的性质,综合性强,熟练掌握相关知识及定理是解题关键.3、2.28【解析】【分析】由图形可知阴影面积=半圆面积-两个小三角形面积和,根据公式计算即可.【详解】πr2÷2-2×2÷2×2=3.14×2×2÷2-4=2.28.【考点】本题考查了圆的面积公式,解题的关键是熟练掌握间接法求阴影部分图形的面积.4、(1)证明见详解(2)(3)为定值,【解析】【分析】(1)由,,可证明,由圆周角定理可知,可证明,再借助对顶角相等可知,进而证明,即可推导出;(2)由(1)可知,AC为DG的垂直平分线,即有,连接OA、OB、OC、OD,过点O作,,垂足分别为M、N,利用垂径定理和圆周角定理推导,,,;再借助,可证明,进而得到,即可证明,即有;在中,利用勾股定理计算OC的长,即可得到⊙O的半径;(3)过点H作,垂足分别为P、Q,过点D作于点K,由已知条件、三角函数函数及含30°角的直角三角形的性质,先计算出,,再根据,可得出,整理可得.(1)证明:∵,,∴,∴,,∵,∴,∴,∵,∴,∴;(2)解:由(1)可知,,,∴,即AC为DG的垂直平分线,∴,如图1,连接OA、OB、OC、OD,过点O作,,垂足分别为M、N,则有,,,,,∴,同理,,∵,即,,∵,∴,在和中,,∴,∴,在中,,即圆⊙O的半径为;(3)为定值,且,证明如下:如图2,过点H作,垂足分别为P、Q,过点D作于点K,∵,∴,∵,,∴,即,∴,∵,,且,∴,∵,∴在中,,即有,∵,∴,即∴,∴.【考点】本题主要考查了圆周角定理、垂径定理、等腰三角形的判定与性质、全等三角形的判定与性质、角平分线的性质及利用三角函数解直角三角形等知识,综合性较

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论