综合解析京改版数学9年级上册期中试卷含答案详解【能力提升】_第1页
综合解析京改版数学9年级上册期中试卷含答案详解【能力提升】_第2页
综合解析京改版数学9年级上册期中试卷含答案详解【能力提升】_第3页
综合解析京改版数学9年级上册期中试卷含答案详解【能力提升】_第4页
综合解析京改版数学9年级上册期中试卷含答案详解【能力提升】_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

京改版数学9年级上册期中试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、已知二次函数的图像如图所示,有下列结论:①;②>0;③;④不等式<0的解集为1≤<3,正确的结论个数是(

)A.1 B.2 C.3 D.42、下列各式中表示二次函数的是()A.y=x2+ B.y=2﹣x2C.y= D.y=(x﹣1)2﹣x23、将抛物线C1:y=(x-3)2+2向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为().A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-24、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:…-2013……6-4-6-4…下列各选项中,正确的是A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于-6D.当时,y的值随x值的增大而增大5、如图,AD//BC,∠D=90°,AD=3,BC=4,DC=6,若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有(

)A.1个 B.2个 C.3个 D.4个6、如图,在中,,,将绕点C顺时针旋转得到,点在上,交于F,则图中与相似的三角形有(不再添加其他线段)(

)A.1个 B.2个 C.3个 D.4个二、多选题(7小题,每小题2分,共计14分)1、如图,点P在函数(x>0,k>2,k为常数)的图象上,PC⊥x轴交的图象于点A,PD⊥y轴于点D,交,当点P在(x>0,k>2,k为常数)的图象上运动时(

)A.ODB与OCA的面积相等 B.四边形PAOB的面积不会发生变化C.PA与PB始终相等 D.2、如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.则下列结论中正确的是(

)A.sinα=sinB B.sinα=cosβ C.AD2=BD•DC D.AB2=BD•BC3、已知四条线段a,b,c,d是成比例线段,即,下列说法正确的是(

)A.ad=bc B. C. D.4、下列四个命题中正确的命题有(

)A.两个矩形一定相似 B.两个菱形都有一个角是40°,那么这两个菱形相似C.两个正方形一定相似 D.有一个角相等的两个等腰梯形相似5、如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论中正确的是(

)A.S△ADB=S△ADC;B.当0<x<3时,y1<y2;C.如图,当x=3时,EF=;D.当x>0时,y1随x的增大而增大,y2随x的增大而减小.6、抛物线y=ax2+bx+c(a≠0)的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论中正确的是()A.b2﹣4ac<0B.当x>﹣1时,y随x增大而减小C.a+b+c<0D.若方程ax2+bx+c-m=0没有实数根,则m>2E.3a+c<07、如图,在四边形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,点P是边BC上的动点,若△ABP与△CDP相似,则BP=(

)A.3.6B.C.D.2.4第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、若,则________.2、若函数是反比例函数,那么k的值是_____.3、如图,边长为4的正方形的对称中心是坐标原点O,轴,轴,反比例函数与的图像均与正方形的边相交,则图中阴影部分的面积之和是________.4、写出一个满足“当时,随增大而减小”的二次函数解析式______.5、中,,,,则边的长为_______.6、如图,我市在建高铁的某段路基横断面为梯形,∥,长为6米,坡角为45°,的坡角为30°,则的长为

________米(结果保留根号)7、如图,抛物线与直线交于A(-1,P),B(3,q)两点,则不等式的解集是_____.四、解答题(6小题,每小题10分,共计60分)1、计算:(1)(2)2、在平面直角坐标系中,抛物线交x轴于点,,过点B的直线交抛物线于点C.(1)求该抛物线的函数表达式;(2)若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求面积的最大值;(3)若点M在抛物线上,将线段OM绕点O旋转90°,得到线段ON,是否存在点M,使点N恰好落在直线BC上?若存在,请直接写出点M的坐标;若不存在,请说明理由.3、为了测量大楼顶上(居中)避雷针BC的长度,在地面上点A处测得避雷针底部B和顶部C的仰角分别为55°58′和57°,已知点A与楼底中间部位D的距离约为80米,求避雷针BC的长度.(参考数据:sin55°58′≈0.83,cos55°58′≈0.56,tan55°58′≈1.48,sin57°≈0.84,tan57°≈1.54)4、如图,抛物线与轴交于两点和,与轴交于点C,连接、.(1)求抛物线的解析式;(2)点M在线段上(与A、B不重合),点N在线段上(与B、C不重合),是否存在以C,M,N为顶点的三角形与△ABC相似,若存在,请求出点N的坐标;若不存在,请说明理由.5、某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).6、在等边三角形中,,D为的中点.连接,E,F分别为,的中点,将绕点C逆时针旋转,记旋转角为,直线和直线交于点G.(1)如图1,线段和线段的数量关系是________________,直线与直线相交所成的较小角的度数是________________.(2)将图1中的绕点C逆时针旋转到图2所示位置时,判断(1)中的结论是否仍然成立?若成立,请仅就图2的情形给出证明;若不成立,请说明理由.(3)在(2)的条件下,当以点C,F,E,G为顶点的四边形是矩形时,请直接写出的长.-参考答案-一、单选题1、A【解析】【分析】根据抛物线的开口方向、于x轴的交点情况、对称轴的知识可判①②③的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定④.【详解】解:∵抛物线的开口向上,∴a>0,故①正确;∵抛物线与x轴没有交点∴<0,故②错误∵由抛物线可知图象过(1,1),且过点(3,3)∴8a+2b=2∴4a+b=1,故③错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则抛物线与直线y=x交于这两点∴<0可化为,根据图象,解得:1<x<3故④错误.故选A.【考点】本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键.2、B【解析】【分析】利用二次函数的定义逐项判断即可.【详解】解:A、y=x2+,含有分式,不是二次函数,故此选项错误;B、y=2﹣x2,是二次函数,故此选项正确;C、y=,含有分式,不是二次函数,故此选项错误;D、y=(x﹣1)2﹣x2=﹣2x+1,是一次函数,故此选项错误.故选:B.【考点】本题考查了二次函数的概念,属于应知应会题型,熟知二次函数的定义是解题关键.3、D【解析】【分析】根据抛物线C1的解析式得到顶点坐标,利用二次函数平移的规律:左加右减,上加下减,并根据平移前后二次项的系数不变可得抛物线C2的顶点坐标,再根据关于x轴对称的两条抛物线的顶点横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的解析式.【详解】解:∵抛物线C1:y=(x-3)2+2,其顶点坐标为(3,2)∵向左平移3个单位长度,得到抛物线C2∴抛物线C2的顶点坐标为(0,2)∵抛物线C2与抛物线C3关于x轴对称∴抛物线C3的横坐标不变,纵坐标互为相反数,二次项系数互为相反数∴抛物线C3的顶点坐标为(0,-2),二次项系数为-1∴抛物线C3的解析式为y=-x2-2故选:D.【考点】本题主要考查了二次函数图象的平移、对称问题,熟练掌握平移的规律以及关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数是解题的关键.4、C【解析】【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断.【详解】解:设二次函数的解析式为,依题意得:,解得:,∴二次函数的解析式为=,∵,∴这个函数的图象开口向上,故A选项不符合题意;∵,∴这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;∵,∴当时,这个函数有最小值,故C选项符合题意;∵这个函数的图象的顶点坐标为(,),∴当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C.【考点】本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.5、A【解析】【分析】根据已知分两种情况△PAD∽△PBC或△PAD∽△CBP来进行分析,求得PD的长,从而确定P存在的个数.【详解】解:∵AD∥BC,∠D=90°,∴∠C=∠D=90°,∵DC=6,AD=3,BC=4,设PD=x,则PC=6-x.①若PD:PC=AD:BC,则△PAD∽△PBC,则,解得:x=,经检验:x=是原方程的解;②若PD:BC=AD:PC,则△PAD∽△BPC,则,解得:x无解,所以这样的点P存在的个数有1个.故选:A.【考点】此题考查了相似三角形的性质,熟练掌握相似三角形对应边成比例是解本题的关键.6、D【解析】【分析】根据旋转的性质及相似三角形的判定方法进行分析,找出存在的相似三角形即可.【详解】根据题意得:BC=B′C,AB=A′B′,AC=A′C,∠B=∠B′,∠A=∠A′=30°,∠ACB=∠A′CB′=90°∵∠A=30°,∠ACB=90°∴∠B=60°∴BB′=BC=B′C,∠B=∠BCB′=∠BB′C=60°∴∠B′CA=30°,∠ACA′=60°,A′B′∥BC∴∠B′FC=∠B′FA=90°∴△AB′F∽△ABC∽△A′B′C∽△A′CF∽△CFB′∴有4个故选D.【考点】考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.二、多选题1、AB【解析】【分析】由反比例函数k的几何意义可判断出各个结论的正误.【详解】解:A.∵点A,B在函数的图象上,∴,故选项A正确;B.∵矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化;故此选项正确.C.PA与PB不一定相等,只有当四边形OCPD是正方形时满足PA=PB,故此选项不正确;D.∵A、B在上,∴S△AOC=S△BOE,∴•OC•AC=•OD•BD,∴OC•AC=OD•BD,∵OC=PD,OD=PC,∴PD•AC=DB•PC,∴.故此选项不正确.故选AB【考点】此题是反比例函数综合题,主要考查了反比例函数(k≠0)中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.2、ABCD【解析】【分析】根据同角的余角相等判断A;根据三角函数的定义判断B;根据相似三角形的判定和性质判断C、D.【详解】解:∵∠A=90°,AD⊥BC,∴∠B=∠α=90°−∠C,∴sinα=sinB,A正确;∵α+β=90°,∴sinα=cosβ,B正确;∵,,∠B=∠α,∠ADB=∠CDA=90°,∴,,∴AD2=BD•DC,AB2=BD•BC,C、D正确;故选:ABCD.【考点】本题考查的是相似三角形的判定与性质、锐角三角函数的性质,熟练掌握相关知识是解题关键.3、ABD【解析】【分析】根据比例的性质将原式变形,分别进行判断即可,进而得出答案.【详解】解:∵四条线段a,b,c,d是成比例线段,即,∴A.利用内项之积等于外项之积,ad=bc,故选项正确,B.利用内项之积等于外项之积,a(b+d)=b(a+c),ab+ad=ab+bc,即ad=bc,故选项正确,C.∵,∴,故选项错误,D.∵∴,故选项正确,故选:ABD.【考点】此题主要考查了比例的性质,将比例式灵活正确变形得出是解题关键.4、BC【解析】【分析】根据两个图形相似的性质及判定方法,对应边的比相等,对应角相等,两个条件同时满足来判断正误.【详解】解:A两个矩形对应角都是直角相等,对应边不一定成比例,所以不一定相似,故本小题错误;B两个菱形有一个角相等,则其它对应角也相等,对应边成比例,所以一定相似,故本小题正确;C两个正方形一定相似,正确;D有一个角相等的两个等腰梯形,对应角一定相等,但对应边的比不一定相等,故本小题错误.故选:BC.【考点】本题考查的是相似多边形的判定及菱形,矩形,正方形,等腰梯形的性质及其定义.5、ACD【解析】【分析】对于直线解析式,分别令x与y为0求出y与x的值,确定出A与B坐标,利用AAS得到三角形OBA与三角形CDA全等,利用全等三角形对应边相等得到,确定出C坐标,代入反比例解析式求出k的值,确定出反比例解析式,由图象判断时x的范围,以及与的增减性,把分别代入直线与反比例解析式,相减求出EF的长,即可做出判断.【详解】解:对于直线,令,得到;令,得到,,,即,,在和中,,,,(同底等高三角形面积相等),选项A正确;,把C点坐标代入反比例解析式得:,即,由函数图象得:当时,,选项B错误;当时,,,即,选项C正确;当时,随x的增大而增大,随x的增大而减小,选项D正确.故选:ACD.【考点】此题考查了反比例函数与一次函数的交点,涉及的知识有:一次函数与坐标系的交点,待定系数法确定反比例函数解析式,坐标与图形性质以及反比例函数的性质,熟练掌握函数的性质是解本题的关键.6、BCDE【解析】【分析】利用图象信息,以及二次函数的性质即可一一判断.【详解】∵二次函数与x轴有两个交点,∴b²-4ac>0,故A错误,观察图象可知:当x>-1时,y随x增大而减小,故B正确,∵抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,∴x=1时,y=a+b+c<0,故C正确,∵当m>2时,抛物线与直线y=m没有交点,∴方程ax²+bx+c-m=0没有实数根,故D正确,∵对称轴x=-1=,∴b=2a,∵a+b+c<0,∴3a+c<0,故E正确,故答案为BCDE.【考点】本题考查了二次函数图象与系数的关系,根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7、ABC【解析】【分析】根据相似求出相似比,根据相似比分类讨论计算出结果即可.【详解】解:∠B=∠C,根据题意:或,则:或,则:或,故答案为:或,故选:ABC.【考点】本题考查相似三角形得的性质与应用,能够熟练掌握相似三角形的性质是解决本题的关键.三、填空题1、【解析】【分析】根据比例的基本性质进行化简,代入求职即可.【详解】由可得,,代入.故答案为.【考点】本题主要考查了比例的基本性质化简,准确观察分析是解题的关键.2、0【解析】【分析】直接利用反比例函数的定义得出答案.【详解】∵函数是反比例函数,∴k2﹣3k﹣1=﹣1且3﹣k≠0,解得:k1=0,k2=3,(不合题意舍去)∴k=0.故答案为:0.【考点】本题主要考查反比例函数的定义,掌握反比例函数的定义,是解题的关键.3、8【解析】【分析】根据题意,观察图形可得图中的阴影部分的面积是图中正方形面积的一半,且AB∥x轴,BC∥y轴,而正方形面积为16,由此可以求出阴影部分的面积.【详解】解:根据题意:观察图形可得,图中以B、D为顶点的小阴影部分,绕点O顺时针旋转90°,正好和以A、C为顶点的小空白部分重合,所以阴影的面积是图中正方形面积的一半,且AB∥x轴,BC∥y轴,反比例函数与的图象均与正方形ABCD的边相交,而边长为4的正方形面积为16,所以图中的阴影部分的面积是8.故答案为:8.【考点】本题主要考查反比例函数图象和性质的应用,关键是要分析出其图象特点,再结合性质作答.4、(答案不唯一)【解析】【分析】先根据二次函数的图象和性质取对称轴x=2,设抛物线的解析式为y=a(x-2)2,由于在抛物线对称轴的右边,y随x增大而减小,得出a<0,于是去a=-1,即可解答.【详解】解:设抛物线的解析式为y=a(x-2)2,∵在抛物线对称轴的右边,y随x增大而减小,∴a<0,符合上述条件的二次函数均可,可取a=-1,则y=-(x-2)2.故答案为:y=-(x-2)2.【考点】本题考查了二次函数的图象和性质,解题的关键是掌握二次函数的图象和性质.5、2【解析】【分析】根据正切定义得到,则可设AB=x,BC=2x,利用勾股定理计算出AC=x,所以x=,解得x=1,然后计算2x即可得到BC的长.【详解】解:如图,∵∠B=90°,∴,设AB=x,则BC=2x,∴,∴x=,解得x=1,∴BC=2x=2.故答案为:2.【考点】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.6、【解析】【分析】过C作CE⊥AB于E,DF⊥AB于F,分别在Rt△CEB与Rt△DFA中使用三角函数即可求解.【详解】解:过C作CE⊥AB于E,DF⊥AB于F,可得矩形CEFD和Rt△CEB与Rt△DFA,∵BC=6,∴CE=,∴DF=CE=,∴,故答案为:.【考点】此题考查了解直角三角形的应用-坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.7、或.【解析】【分析】由可变形为,即比较抛物线与直线之间关系,而直线PQ:与直线AB:关于与y轴对称,由此可知抛物线与直线交于,两点,再观察两函数图象的上下位置关系,即可得出结论.【详解】解:∵抛物线与直线交于,两点,∴,,∴抛物线与直线交于,两点,观察函数图象可知:当或时,直线在抛物线的下方,∴不等式的解集为或.故答案为或.【考点】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.四、解答题1、(1);(2)2.【解析】【分析】(1)先去绝对值,零指数幂,负指数幂,二次根式化简,再合并同类项即可;(2)先计算负指数幂,代入特殊角三角函数值,二次根式化简,再计算乘法,合并同类项即可.【详解】解:(1),=,=;(2)=,=,=2.【考点】本题考查特殊角三角函数值,二次根式,负指数幂,零指数幂,绝对值的混合运算,掌握运算法则是解题关键.2、(1);(2);(3)存在,或或或【解析】【分析】(1)将A、B两点的坐标分别代入抛物线的解析式中,得关于a、b的二元一次方程组,解方程组即可求得a、b,从而可求得抛物线的函数解析式;(2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,则有,设,则可得E点坐标,从而可分别求得PE、DE,从而求得PE,解由二次函数与一次函数组成的方程组,可求得点C的坐标,进而求得△PBC的面积关于m的函数,求出函数的最值即可;(3)设点M的坐标为(p,q),分别求出直线OM、ON的解析式,再求得ON与直线的交点N的坐标,根据OM=ON,即可求出p与q的值,从而求得点M的坐标.【详解】(1)将点,代入中,得:解得∴该抛物线表达式为.(2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,如图.设点,则点.∵点P、E均位于直线的下方∴P、E两点的纵坐标均为负∴,∴∵点C的坐标为方程组的一个解∴解这个方程组,得,∵点B坐标为∴点C的横坐标为∴∴.(其中)∵∴这个二次函数有最大值,且当时,的最大值为.(3)存在设M(p,q),其中,且p≠0,则直线OM的解析式为:由于ON⊥OM,则直线ON的解析式为:解方程组,得,即点N的坐标为∴∵,且OM=ON∴∴即或把代入两式中并整理,得:或解方程得:,,,(舍去)当时,;当时,;当时,故点M的坐标分别为:或或当p=0时,则q=-3,即M(0,-3),而,且OM⊥OB即此时点M也满足题意综上所述,满足题意的点M的坐标为或或或.【考点】本题是二次函数的压轴题,也是中考常考题型,它考查了待定系数法求二次数解析式,二次函数的图象,求二次函数的最值,平面直角坐标系中图象旋转问题,解方程组,勾股定理等知识,运算量较大,这对学生的运算能力提出了更高的要求;求三角形面积时用到图形的割补方法,这是在平面直角坐标系中求图象面积常用的方法.3、避雷针BC的长度为4.8米.【解析】【分析】解直角三角形求出CD,BD,根据BC=CD-BD求解即可.【详解】解:在Rt△ABD中,∵,∴1.48=,∵AD=80米,∴BD=118.4(米),在Rt△CAD中,∵tan∠CAD=,∴1.54=,∴CD=123.2(米),∴BC=CD-BD=4.8(米)答:避雷针BC的长度为4.8米.【考点】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.4、(1);(2)存在,点N的坐标为:或或【解析】【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)分为直角、为直角、为直角两种情况,利用三角形相似求解即可.【详解】解:(1)点,在抛物线上,,解得,抛物线的解析式为:;(2)存在,理由:点C的坐标为(0,2)由点A、B、C的坐标得,,,,则,故为以为斜边的直角三角形,;以C,M,N为顶点的三角形与△ABC相似,则为直角三角形,由点B、C的坐标得,直线的表达式为,点N在上,故设点,设点;①当为直角时,此时点M与点A重合,不符合题意,②当为直角时,如图1,过点N作轴于点G,,,,,当时,,∴,∴的相似比为,则,,即且,解得:,故点N的坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论