中考数学总复习《旋转》过关检测试卷【考点梳理】附答案详解_第1页
中考数学总复习《旋转》过关检测试卷【考点梳理】附答案详解_第2页
中考数学总复习《旋转》过关检测试卷【考点梳理】附答案详解_第3页
中考数学总复习《旋转》过关检测试卷【考点梳理】附答案详解_第4页
中考数学总复习《旋转》过关检测试卷【考点梳理】附答案详解_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《旋转》过关检测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正确的有()A.①②③④ B.②③ C.②③④ D.③④2、如图,在矩形中,,,是矩形的对称中心,点、分别在边、上,连接、,若,则的值为(

)A. B. C. D.3、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为(

)A.3 B.1 C. D.4、将按如图方式放在平面直角坐标系中,其中,,顶点的坐标为,将绕原点逆时针旋转,每次旋转60°,则第2023次旋转结束时,点对应点的坐标为(

)A. B. C. D.5、如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B的落点依次为B1,B2,B3,…,则B2019的坐标为(

)A.(1010,0) B.(1310.5,) C.(1345,) D.(1346,0)第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图所示,直线,垂足为点是直线上的两点,且.直线绕点按逆时针方向旋转,旋转角度为.(1)当时,在直线上找点,使得是以为顶角的等腰三角形,此时_____.(2)当在什么范围内变化时,直线上存在点,使得是以为顶角的等腰三角形,请用不等式表示的取值范围:_________.2、在中,顶点,,.将与正方形组成的图形绕点逆时针旋转,每次旋转,则第2022次旋转结束时,点的坐标是________.3、如图,在中,,,,为内一点,则的最小值为__________.4、如图,在正方形ABCD中,顶点A,B,C,D在坐标轴上,且,以AB为边构造菱形ABEF(点E在x轴正半轴上),将菱形ABEF与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转90°,则第27次旋转结束时,点的坐标为________.5、如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到的位置,使得,则等于_____.三、解答题(5小题,每小题10分,共计50分)1、图,在每个小正方形的边长为1个单位的网格中,的顶点均在格点(网格线的交点)上.(1)将向右平移5个单位得到,画出;(2)将(1)中的绕点C1逆时针旋转得到,画出.2、如图,点A(a,0),B(0,b),且a、b满足(a﹣2)2+|4b﹣8|=0.(1)如图1,求a,b的值;(2)如图2,点C在线段AB上(不与A、B重合)移动,AB⊥BD,且∠COD=45°,猜想线段AC、BD、CD之间的数量关系并证明你的结论;(3)如图3,若P为x轴正半轴上异于原点O和点A的一个动点,连接PB,将线段PB绕点P顺时针旋转90°至PE,直线AE交y轴于点Q,当P点在x轴上移动时,线段BE和线段BQ中哪一条线段长为定值,并求出该定值.3、在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.4、如图,点是的边上的动点,,连接,并将线段绕点逆时针旋转得到线段.(1)如图1,作,垂足在线段上,当时,判断点是否在直线上,并说明理由;(2)如图2,若,,求以、为邻边的正方形的面积.5、如图,已知△ABC是等边三角形,在△ABC外有一点D,连接AD,BD,CD,将△ACD绕点A按顺时针方向旋转得到△ABE,AD与BE交于点F,∠BFD=97°.(1)求∠ADC的大小;(2)若∠BDC=7°,BD=2,BE=4,求AD的长.-参考答案-一、单选题1、C【解析】【分析】利用旋转性质可得△ABF≌△ACD,根据全等三角形的性质一一判断即可.【详解】解:∵△ADC绕A顺时针旋转90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正确,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正确无法判断BE=CD,故①错误,故选:C.【考点】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型.2、D【解析】【分析】连接AC,BD,过点O作于点,交于点,利用勾股定理求得的长即可解题.【详解】解:如图,连接AC,BD,过点O作于点,交于点,四边形ABCD是矩形,同理可得故选:D.【考点】本题考查中心对称、矩形的性质、勾股定理等知识,学会添加辅助线,构造直角三角形是解题关键.3、D【解析】【分析】根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设与相交于点,,,,旋转,,是等边三角形,,,,,,,,阴影部分的面积为故选D【考点】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.4、A【解析】【分析】根据旋转性质,可知6次旋转为1个循环,故先需要求出前6次循环对应的A点坐标即可,利用全等三角形性质求出第一次旋转对应的A点坐标,之后第2次旋转,根据图形位置以及长,即可求出,第3、4、5次分别利用关于原点中心对称,即可求出,最后一次和A点重合,再判断第2023次属于循环中的第1次,最后即可得出答案.【详解】解:由题意可知:6次旋转为1个循环,故只需要求出前6次循环对应的A点坐标即可第一次旋转时:过点作轴的垂线,垂足为,如下图所示:由的坐标为可知:,,在中,,由旋转性质可知:,,,,在与中:,,,此时点对应坐标为,当第二次旋转时,如下图所示:此时A点对应点的坐标为.当第3次旋转时,第3次的点A对应点与A点中心对称,故坐标为.当第4次旋转时,第4次的点A对应点与第1次旋转的A点对应点中心对称,故坐标为.当第5次旋转时,第5次的点A对应点与第2次旋转的A点对应点中心对称,故坐标为.第6次旋转时,与A点重合.故前6次旋转,点A对应点的坐标分别为:、、、、、.由于,故第2023次旋转时,A点的对应点为.故选:A.【考点】本题主要是考查了旋转性质、中心对称求点坐标、三角形全等以及点的坐标特征,熟练利用条件证明全等三角形,;通过旋转和中心对称求解对应点坐标,是求解该题的关键.5、D【解析】【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2019=336×6+3,因此点向右平移(即)即可到达点,根据点的坐标就可求出点的坐标.【详解】连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.由图可知:每翻转6次,图形向右平移4.∵2019=336×6+3,∴点B3向右平移1344(即336×4)到点B2019.∵B3的坐标为(2,0),∴B2019的坐标为(1346,0),故选:D【考点】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.二、填空题1、(1)或;(2)45°≤≤135°且≠90°【解析】【分析】(1)先求出旋转后与的夹角,然后根据题意以点B为圆心,的长为半径作弧,与直线的交点P即为所求,利用锐角三角函数即可求出BC和OC,再利用勾股定理求出PC,从而求出结论;(2)当由图可知:当BC≤AB且A、B、P不共线时,直线上存在点,使得是以为顶角的等腰三角形,求出当BC=AB=时,的度数,然后根据题意即可求出结论.【详解】解:(1)当时,此时与的夹角为90°-60°=30°以点B为圆心,的长为半径作弧,与直线的交点P即为所求,即BP=AB=,过点B作BC⊥,BC=OB·sin30°=1<BP,OC=OB·cos30°=∴在直线上存在两个P点满足题意根据勾股定理PC=∴OP=OC-PC或OP=OC+PC∴OP=或故答案为:或;(2)当由图可知:当BC≤AB且A、B、P不共线时,直线上存在点,使得是以为顶角的等腰三角形,当BC=AB=时,sin∠BOC=∴∠BOC=45°当点B在直线右侧时,90°-∠BOC=45°;当点B在直线左侧时,90°+∠BOC=135°;∵BC≤AB且A、B、P不共线时∴45°≤≤135°且≠90°故答案为:45°≤≤135°且≠90°.【考点】此题考查的是锐角三角函数、作等腰三角形和勾股定理,掌握锐角三角函数、分类讨论的数学思想、勾股定理和利用极限思想求取值范围是解决此题的关键.2、【解析】【分析】先求出AB,再利用正方形的性质确定C点坐标,由于2020=4×505,所以第2020次旋转结束时,正方形ABCD回到初始位置,再旋转2次,得出C的坐标便是答案值.【详解】∵A(4,3),B(4,-3),∴AB=3-(-3)=6,∵四边形ABCD为正方形,∴BC=AB=6,∴C(10,-3),∵△OAB与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转90°,∴每4次一个循环,∵2022=4×505+2,∴第2020次旋转结束时,正方形ABCD回到初始位置,从初始位置再旋转两次,就到第2022次旋转到的位置,∴点C的坐标为(-10,3).故答案为:(-10,3).【考点】本题考查了坐标与图形变化-旋转,正方形的性质,解答本题的关键是找出C点坐标变化的规律.3、【解析】【分析】将△APB绕点A顺时针旋转60°,得到△,连接、,作CN⊥交的延长线于点N,则△≌△APB,由题意可证△是等边三角形,所以,所以当共线时,最小,求出即可;【详解】将△APB绕点A顺时针旋转60°,得到△,连接、,作CN⊥交的延长线于点N,则△≌△APB,∴∠BAP=∠,∴,,,∴△是等边三角形,∴,∴,∴当共线时,最小,∴∠CAN=180°-∠,CN⊥AN,∴∠ACN=30°,∴,,∴,∴,∴=;故答案为:.【考点】本题考查了全等三角形判定与性质,旋转的性质,以及等边三角形的性质和求线段最值的问题,掌握做辅助线是解题的关键.4、(2,-2)【解析】【分析】先求出点F坐标,由题意可得每8次旋转一个循环,即可求解.【详解】解:∵点B(2,0),∴OB=2,∴OA=2,∴AB=OA=2,∵四边形ABEF是菱形,∴AF=AB=2,∴点F(2,2),由题意可得每4次旋转一个循环,∴27÷4=6…3,∴点F27的坐标与点F3的坐标一样,在第四象限,如下图,过F3作F3H⊥y轴,∵F3H⊥y轴,AF⊥y轴,∴∠OAF=∠F3HO=90°,∴∠AOF+∠HOF3=90°,∵OF⊥OF3,∴∠AOF+∠AFO=90°,∴∠AFO=∠HOF3,∴△OAF≌△F3HO,∴HF3=OA=2,OH=AF=2,∴F3(2,-2),∴点F27的坐标(2,-2),故答案为:(2,-2)【考点】本题考查了菱形的性质,全等三角形的性质与判定及旋转的性质,找到旋转的规律是本题的关键.5、50°【解析】【分析】由平行线的性质可求得的度数,然后由旋转的性质得到,然后依据三角形的性质可知的度数,依据三角形的内角和定理可求得的度数,从而得到的度数.【详解】解:∵∴∵由旋转的性质可知:∴∴∴故答案为:.三、解答题1、(1)作图见解析;(2)作图见解析.【解析】【分析】(1)利用点平移的规律找出、、,然后描点即可;(2)利用网格特点和旋转的性质画出点,即可.【详解】解:(1)如下图所示,为所求;(2)如下图所示,为所求;【考点】本题考查了平移作图和旋转作图,熟悉相关性质是解题的关键.2、(1)2(2)CD=BD+AC.理由见解析(3)BQ是定值,【解析】【分析】(1)根据非负数的性质得到a-2=0,4b-8=0,求得a=2,b=2,得到OA=2,OB=2,于是得到结果;(2)证明:将△AOC绕点O逆时针旋转90°得到△OBF根据已知条件得到∠DBF=180°,由∠DOC=45°,∠AOB=90°,同时代的∠BOD+∠AOC=45°,求出∠FOD=∠BOF+∠BOD=∠BOD+∠AOC=45°,推出△ODF≌△ODC,根据全等三角形的性质得到DC=DF=DB+BF=DB+DC;(3)BQ是定值,作EF⊥OA于F,在FE上截取PF=FD,由∠BAO=∠PDF=45°,得到∠PAB=∠PDE=135°,根据余角的性质得到∠BPA=∠PED,推出△PBA≌EPD,根据全等三角形的性质得到AP=ED,于是得到FD+ED=PF+AP.即:FE=FA,根据等腰直角三角形的性质得到结论.(1)解:∵(a﹣2)2+|4b﹣8|=0,∴a-2=0,4b-8=0,∴a=2,b=2,∴A(2,0)、B(0,2),∴OA=2,OB=2,∴△AOB的面积=;(2)证明:如图2,将△AOC绕点O逆时针旋转90°得到△OBF,而∵∠OAC=∠OBF=∠OBA=45°,∠DBA=90°,∴∠DBF=180°,∵∠DOC=45°,∠AOB=90°,∴∠BOD+∠AOC=45°,∴∠FOD=∠BOF+∠BOD=∠BOD+∠AOC=45°,在△ODF与△ODC中,,∴:△ODF≌△ODC,∴DC=DF,DF=BD+BF,∴CD=BD+AC.(3)BQ是定值,BE明显不是定值,理由如下:作EF⊥OA于F,在FE上截取FD=PF,∵∠BAO=∠PDF=45°,∴∠PAB=∠PDE=135°,∴∠BPA+∠EPF=90°,∠EPF+∠PED=90°,∴∠BPA=∠PED,在△PBA与△EPD中,,∴△PBA≌EPD(AAS),∴AP=ED,∴FD+ED=PF+AP,即:FE=FA,∴∠FEA=∠FAE=45°,∴∠QAO=∠EAF=∠OQA=45°,∴OA=OQ=2,∴BQ=4.为定值.【考点】本题考查了全等三角形的判定和性质,坐标与图形的性质,等腰直角三角形的判定与性质,旋转的性质,三角形面积的计算,非负数的性质,正确的作出辅助线是解题的关键.3、(1)∠ADE=15°;(2)见解析.【解析】【分析】(1)根据旋转的性质可得CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,根据等边对等角即可求出∠CAD=∠CDA=75°,再根据直角三角形的两个锐角互余即可得出结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得BF=AC,然后根据30°所对的直角边是斜边的一半即可求出AB=AC,从而得出BF=AB,然后证出△ACD和△BCE为等边三角形,再利用HL证出△CFD≌△ABC,证出DF=BE,即可证出结论.【详解】(1)解:∵△ABC绕点C顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣∠CAD=15°;(2)证明:如图2,连接AD∵点F是边AC中点,∴BF=AF=CF=AC,∵∠ACB=30°,∴AB=AC,∴BF=CF=AB,∵△ABC绕点C顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,DC=AC∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,在Rt△CFD和Rt△ABC中∴Rt△CFD≌Rt△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.【考点】此题考查的是旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论