中考数学总复习《旋转》强化训练含答案详解(B卷)_第1页
中考数学总复习《旋转》强化训练含答案详解(B卷)_第2页
中考数学总复习《旋转》强化训练含答案详解(B卷)_第3页
中考数学总复习《旋转》强化训练含答案详解(B卷)_第4页
中考数学总复习《旋转》强化训练含答案详解(B卷)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《旋转》强化训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在中,,,将绕点顺时针旋转得到,点A、B的对应点分别是,,点是边的中点,连接,,.则下列结论错误的是(

)A. B.,C. D.2、如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C,连接AA',若∠1=25°,则∠BAA'的度数是(

)A.70° B.65° C.60° D.55°3、如图,△ABC是等边三角形,D为BC边上的点,△ABD经旋转后到达△ACE的位置,那么旋转角为(

)A.75° B.60° C.45° D.15°4、如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在,,,四个点中,直线PB经过的点是(

)A. B. C. D.5、如图,在矩形中,,,是矩形的对称中心,点、分别在边、上,连接、,若,则的值为(

)A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、将图1剪成若干小块,再图2中进行拼接平移后能够得到①、②、③中的__________.2、如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=_________.3、将边长为的正方形绕点按顺时针方向旋转到的位置(如图),使得点落在对角线上,与相交于点,则=_________.(结果保留根号)4、如图,在Rt△ABC中,AC=BC=1,D是斜边AB上一点(与点A,B不重合),将△BCD绕着点C旋转90°到△ACE,连结DE交AC于点F,若△AFD是等腰三角形,则AF的长为_____.5、如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到的位置,使得,则等于_____.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中已知抛物线经过点和点,点为抛物线的顶点.(1)求抛物线的表达式及点的坐标;(2)将抛物线关于点对称后的抛物线记作,抛物线的顶点记作点,求抛物线的表达式及点的坐标;(3)是否在轴上存在一点,在抛物线上存在一点,使为顶点的四边形是平行四边形?若存在,请求出点坐标,若不存在,请说明理由.2、已知和都是等腰直角三角形,.(1)如图1,连接,,求证:;(2)将绕点O顺时针旋转.①如图2,当点M恰好在边上时,求证:;②当点A,M,N在同一条直线上时,若,,请直接写出线段的长.3、将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.(1)如图,若点A,E,D第一次在同一直线上,BG与CE交于点H,连接BE.①求证:BE平分∠AEC.②取BC的中点P,连接PH,求证:PHCG.③若BC=2AB=2,求BG的长.(2)若点A,E,D第二次在同一直线上,BC=2AB=4,直接写出点D到BG的距离.4、如图,在正方形ABCD中,点P在直线BC上,作射线AP,将射线AP绕点A逆时针旋转45°,得到射线AQ,交直线CD于点Q,过点B作BE⊥AP于点E,交AQ于点F,连接DF.(1)依题意补全图形;(2)用等式表示线段BE,EF,DF之间的数量关系,并证明.5、如图,已知线段OA在平面直角坐标系中,O是原点.(1)将OA绕点O顺时针旋转60°得到,过点作轴,垂足为B.请在图中用不含刻度的直尺和圆规分别作出、;(2)若,则的面积是______.-参考答案-一、单选题1、D【解析】【分析】根据旋转的性质可判断A;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C;利用等腰三角形的性质和含30°角的直角三角形的性质可判断D.【详解】A.∵将△ABC绕点C顺时针旋转60°得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,∴△BCE是等边三角形,∴BE=BC,故A正确;B.∵点F是边AC中点,∴CF=BF=AF=AC,∵∠BCA=30°,∴BA=AC,∴BF=AB=AF=CF,∴∠FCB=∠FBC=30°,延长BF交CE于点H,则∠BHE=∠HBC+∠BCH=90°,∴∠BHE=∠DEC=90°,∴BF//ED,∵AB=DE,∴BF=DE,故B正确.C.∵BF∥ED,BF=DE,∴四边形BEDF是平行四边形,∴BC=BE=DF,∵AB=CF,BC=DF,AC=CD,∴△ABC≌△CFD,∴,故C正确;D.∵∠ACB=30°,∠BCE=60°,∴∠FCG=30°,∴FG=CG,∴CG=2FG.∵∠DCE=∠CDG=30°,∴DG=CG,∴DG=2FG.故D错误.故选D.【考点】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30°角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键.2、B【解析】【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的内角和定理可得结果.【详解】∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=20°=∠BAC∴∠BAA′=180°-70°-45°=65°,故选:B.【考点】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.3、B【解析】【分析】根据题意可知旋转角为,根据等边三角形的性质即可求解.【详解】解:△ABD经旋转后到达△ACE的位置,△ABC是等边三角形,旋转角为,故选B【考点】本题考查了等边三角形的性质,找旋转角,找到旋转前后对应的线段所产生的夹角即为旋转是解题的关键.4、B【解析】【分析】根据含30°角的直角三角形的性质可得B(2,2+2),利用待定系数法可得直线PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y=x+2中可解答.【详解】解:∵点A(4,2),点P(0,2),∴PA⊥y轴,PA=4,由旋转得:∠APB=60°,AP=PB=4,如图,过点B作BC⊥y轴于C,∴∠BPC=30°,∴BC=2,PC=2,∴B(2,2+2),设直线PB的解析式为:y=kx+b,则,∴,∴直线PB的解析式为:y=x+2,当y=0时,x+2=0,x=-,∴点M1(-,0)不在直线PB上,当x=-时,y=-3+2=1,∴M2(-,-1)在直线PB上,当x=1时,y=+2,∴M3(1,4)不在直线PB上,当x=2时,y=2+2,∴M4(2,)不在直线PB上.故选:B.【考点】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B的坐标是解本题的关键.5、D【解析】【分析】连接AC,BD,过点O作于点,交于点,利用勾股定理求得的长即可解题.【详解】解:如图,连接AC,BD,过点O作于点,交于点,四边形ABCD是矩形,同理可得故选:D.【考点】本题考查中心对称、矩形的性质、勾股定理等知识,学会添加辅助线,构造直角三角形是解题关键.二、填空题1、①②##②①【解析】【详解】解:根据图形1可得剪成若干小块,再图2中进行拼接平移后能够得到①、②,不能拼成③,故答案为:①②.2、【解析】【详解】∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为:.3、【解析】【分析】先根据正方形的性质得到CD=1,∠CDA=90°,再利用旋转的性质得CF=,根据正方形的性质得∠CFE=45°,则可判断△DFH为等腰直角三角形,从而计算CF-CD即可.【详解】∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴CF=,∠CFDE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF-CD=-1.故答案为-1.【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.4、或【解析】【分析】Rt△ABC中,AC=BC=1,所以∠CAB=∠B=45°,∠ECD=90°,∠CDE=∠CED=45°,分两种情况讨论①AF=FD时,AF=AC=×1=;②AF=AD时,AF=.【详解】解:∵Rt△ABC中,AC=BC=1,∴∠CAB=∠B=45°,∵△BCD绕着点C旋转90°到△ACE,∴∠ECD=90°,∠CDE=∠CED=45°,①AF=FD时,∠FDA=∠FAD=45°,∴∠AFD=90°,∠CDA=45°+45°=90°=∠ECD=∠DAE,∵EC=CD,∴四边形ADCE是正方形,∴AD=DC,∴AF=AC=×1=;②AF=AD时,∠ADF=∠AFD=67.5°,∴∠CDB=180°-∠ADE-∠EDC=180°-67.5°-45°=67.5°,∴∠DCB=180°-67.5°-45°=67.5°,∴∠DCB=∠CDB,∴BD=CB=1,∴AD=AB-BD=,∴AF=AD=,故答案为:或.【考点】本题考查了旋转的性质,正确利用旋转原理和直角三角形的性质,进行分类讨论是解题的关键.5、50°【解析】【分析】由平行线的性质可求得的度数,然后由旋转的性质得到,然后依据三角形的性质可知的度数,依据三角形的内角和定理可求得的度数,从而得到的度数.【详解】解:∵∴∵由旋转的性质可知:∴∴∴故答案为:.三、解答题1、(1)(2)(3)存在,【解析】【分析】()利用待定系数法将两个已知点坐标代入抛物线方程之后解二元一次方程组即可求出解析式,再利用顶点坐标公式求出抛物线的顶点坐标;()先将点关于点的对称点的坐标求出来,由与关于点对称可得的开口向下,所以的,再设顶点坐标公式后求出对称后的抛物线的解析式;()分类讨论当为四边形的对角线时和当为平行四边形的边时的情况.(1)把和代入有得:L1的函数表达式为,顶点D的坐标为.(2)与关于点对称,的顶点的坐标为,点坐标为,L2的函数表达式为;(3)存在,理由如下:如下图所示,当为四边形的对角线时,点与点关于点对称,点为平行四边形的对称中心,当与重合时,点为关于的对称点,此时点坐标为.②当为平行四边形的边时,过点作轴于点,过点作轴的平行线,过点作轴的平行线,两线交于一点,四边形是平行四边形,,此时容易证明和全等,得出,即点的纵坐标为,把代入得,解得:,,此时点的坐标,,综上所述点共有三个,坐标分别是.【考点】本题主要考查二次函数解析式求解、利用尺规作关于中心对称的图形,平行四边形的相关性质,明确对称中心的位置,分别找出原图中各个关键点的坐标是解决本题的关键.2、(1)见解析;(2)①见解析;②或【解析】【分析】(1)证明△AMO≌△BNO即可;(2)①连接BN,证明△AMO≌△BNO,得到∠A=∠OBN=45°,进而得到∠MBN=90°,且△OMN为等腰直角三角形,再在△BNM中使用勾股定理即可证明;②分两种情况分别画出图形即可求解.【详解】解:(1)∵和都是等腰直角三角形,∴,又,,∴,∴,∴;(2)①连接BN,如下图所示:∴,,且,∴,∴,,∴,且为等腰直角三角形,∴,在中,由勾股定理可知:,且∴;②分类讨论:情况一:如下图2所示,设AO与NB交于点C,过O点作OH⊥AM于H点,,为等腰直角三角形,∴,在中,,∴;情况二:如下图3所示,过O点作OH⊥AM于H点,,为等腰直角三角形,∴,在中,,∴;故或.【考点】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.3、(1)①见解析;②见解析;③(2)【解析】【分析】(1)①根据旋转的性质得到,求得,根据平行线的性质得到,于是得到结论;②如图1,过点作的垂线,根据角平分线的性质得到,求得,根据全等三角形的性质得到,根据三角形的中位线定理即可得到结论;③如图2,过点作的垂线,解直角三角形即可得到结论.(2)如图3,连接,,过作交的延长线于,交的延长线于,根据旋转的性质得到,,解直角三角形得到,,根据三角形的面积公式即可得到结论.(1)解:①证明:矩形绕着点按顺时针方向旋转得到矩形,,,又,,,平分;②证明:如图1,过点作的垂线,平分,,,,,,,,,,即点是中点,又点是中点,;③解:如图2,过点作的垂线,,,,,,,,,;(2)解:如图3,连接,,过作交的延长线于,交的延长线于,,,将矩形绕着点按顺时针方向旋转得到矩形,,,点,,第二次在同一直线上,,,,,,,,,,,.【考点】本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.4、(1)补全图形见解析;(2)BE+DF=EF,证明见解析.【解析】【分析】(1)根据题意补全图形即可.(2)延长FE到H,使EH=EF,根据题意证明△ABH≌△ADF,然后根据全等三角形的性质即可证明.【详解】(1)补全图形(2)BE+DF=EF.证明:延长FE到H,使EH=EF∵BE⊥AP,∴AH=AF,∴∠HAP=∠FAP=45°,∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°∴∠BAP+∠2=45°,∵∠1+∠BAP=45°∴∠1=∠2,∴△ABH≌△ADF,∴DF=BH,∵BE+BH=EH=EF,∴BE+DF=EF.【考点】此题考查了正方形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论