版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、如图,点A(2,t)在第一象限,OA与x轴所夹锐角为,tan=2,则t的值为(
)A.4 B.3 C.2 D.12、如图,Rt△ABC中,,,,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿AB向B点运动,设E点的运动时间为t秒,连接DE,当以B、D、E为顶点的三角形与△ABC相似时,t的值为()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.43、一个四边形的各边之比为1∶2∶3∶4,和它相似的另一个四边形的最小边长为,则它的最大边长为(
)A. B. C. D.4、如图,正比例函数和反比例函数的图象在第一象限交于点且则的值为(
)A. B. C. D.5、构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°.类比这种方法,计算tan22.5°的值为()A. B.﹣1 C. D.6、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是(
)A. B.C. D.二、多选题(7小题,每小题2分,共计14分)1、如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,则下列结论中正确的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°2、如图,在△ABC中,点D在边AC上,下列条件中,不能判断△BDC与△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA3、如图,在△ABC中,点D、E分别在边AB、AC上,且BD=2AD,CE=2AE,则下列结论中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE4、如图,正方形ABCD,点E在边AB上,且AE:EB=2:3,过点A作DE的垂线,垂足为I,交BC于点F,交BD于点H,延长DC至G,使CG=DC,连接GI,EH.下列结论正确的是(
)A. B. C. D.5、如图,在矩形、锐角三角形、正五边形、直角三角形的外边加一个宽度一样的外框,保证外框的边与原图形的对应边平行,则外框与原图一定相似的有()A. B.C. D.6、不能说明△ABC∽△A’B’C’的条件是(
)A.或 B.且C.且 D.且7、如图,在2×3的方格中,画有格点△ABC,下列选项的方格中所画格点三角形(阴影部分)与△ABC不相似的是()A. B. C. D.第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱.有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完.经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为___元时,该种植户一天的销售收入最大.2、如图是用杠杆撬石头的示意图,是支点,当用力压杠杆的端时,杠杆绕点转动,另一端向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的端必须向上翘起,已知杠杆的动力臂与阻力臂之比为6:1,要使这块石头滚动,至少要将杠杆的端向下压______.3、比较大小:____(填“”“”或“>”)4、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF,已知,.(1)以点E,O,F,D为顶点的图形的面积为_________;(2)线段EF的最小值是_________.5、如图1是台湾某品牌手工蛋卷的外包装盒,其截面图如图2所示,盒子上方是一段圆弧(弧MN).D,E为手提带的固定点,DE与弧MN所在的圆相切,DE=2.手提带自然下垂时,最低点为C,且呈抛物线形,抛物线与弧MN交于点F,G.若△CDE是等腰直角三角形,且点C,F到盒子底部AB的距离分别为1,,则弧MN所在的圆的半径为_____.6、如图,点P,A,B,C在同一平面内,点A,B,C在同一直线上,且PC⊥AC,在点A处测得点P在北偏东60°方向上,在点B处测得点P在北偏东30°方向上,若AP=12千米,则A,B两点的距离为___千米.7、已知点A(3,a)、B(-1,b)在函数的图像上,那么a___b(填“>”或“=”或“<”)四、解答题(6小题,每小题10分,共计60分)1、如图,在中,,,,为的中点.动点从点出发以每秒个单位向终点匀速运动(点不与、、重合),过点作的垂线交折线于点.以、为邻边构造矩形.设矩形与重叠部分图形的面积为,点的运动时间为秒.(1)直接写出的长(用含的代数式表示);(2)当点落在的边上时,求的值;(3)当矩形与重叠部分图形不是矩形时,求与的函数关系式,并写出的取值范围;(4)沿直线将矩形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合条件的的值.2、五一期间,小明跟父母去乌镇旅游,欣赏乌镇水乡的美景.如图,当小明走到乌镇古桥的C处时,发现远处有一瞍船匀速行驶过来,当船行驶到A处时,小明测得船头的俯角为30°,同时小明开始计时,船在航行过小明所在的桥之后,继续向前航行到达B处,此时测得船尾的俯角为45°;从小明开始计时到船行驶至B处,共用时15min;已知小明所在位置距离水面6m,船长3m,船到水面的距离忽略不计,请你帮助小明计算一下船的航行速度(结果保留根号)3、如图①已知抛物线的图象与轴交于、两点(在的左侧),与的正半轴交于点,连结;二次函数的对称轴与轴的交点.(1)抛物线的对称轴与轴的交点坐标为,点的坐标为_____(2)若以为圆心的圆与轴和直线都相切,试求出抛物线的解析式:(3)在(2)的条件下,如图②是的正半轴上一点,过点作轴的平行线,与直线交于点与抛物线交于点,连结,将沿翻折,的对应点为’,在图②中探究:是否存在点,使得’恰好落在轴上?若存在,请求出的坐标:若不存在,请说明理由.4、新冠肺炎疫情期间,我国各地采取了多种方式进行预防.其中,某地运用无人机规劝居民回家.如图,无人机于空中A处测得某建筑顶部B处的仰角为,测得该建筑底部C处的俯角为.若无人机的飞行高度为,求该建筑的高度(结果取整数),参考数据:,,.5、某校一棵大树发生一定的倾斜,该树与地面的夹角.小明测得某时大树的影子顶端在地面处,此时光线与地面的夹角;又过了一段时间,测得大树的影子顶端在地面处,此时光线与地面的夹角,若米,求该树倾斜前的高度(即的长度).(结果保留一位小数,参考数据:,,,).6、如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.-参考答案-一、单选题1、A【解析】【分析】根据点A的坐标,利用锐角三角函数定义求出t的值即可.【详解】如图,过点A作AB⊥x轴与点B,∵点A在第一象限,坐标为(2,t),∴,在RT△AOB中,tan,则t=4,故选A.【考点】本题考查了三角函数的定义,熟练掌握定义即可求解.2、A【解析】【分析】求出AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②当∠DEB=∠ACB=90°时,证出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出结果.【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,所以△EBD∽△ABC,E为AB的中点,AE=BE=AB=2cm,∴t=2s;②当∠DEB=∠ACB=90°时,∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D为BC的中点,∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;综上所述,当以B、D、E为顶点的三角形与△ABC相似时,t的值为2或3.5,故选A.【考点】本题考查了相似三角形的判定、平行线的性质、含30°角的直角三角形的性质等知识;熟记相似三角形的判定方法是解决问题的关键,注意分类讨论.3、C【解析】【分析】设它的最大边长为,根据相似图形的性质求解即可得到答案【详解】解:设它的最大边长为,∵两个四边形相似,∴,解得,即该四边形的最大边长为.故选C.【考点】本题考查了相似多边形的性质,牢记“相似多边形对应边的比相等”是解题的关键.4、D【解析】【分析】根据点在直线正比例函数上,则它的坐标应满足直线的解析式,故点的坐标为.再进一步利用了勾股定理,求出点的坐标,根据待定系数法进一步求解.【详解】解:作轴于.设A点坐标为,在中,即,解得(舍去)、;∴点坐标为,将代入数得:.故选:.【考点】此题考查了正比例函数图象上点的坐标特征和用待定系数法求函数解析式,构造直角三角形求出点A坐标是解题关键,构思巧妙,难度不大.5、B【解析】【分析】作Rt△ABC,使∠C=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,根据构造的直角三角形,设AC=x,再用x表示出CD,即可求出tan22.5°的值.【详解】解:作Rt△ABC,使∠C=90°,∠ABC=90°,∠ABC=45°,延长CB到D,使BD=AB,连接AD,设AC=x,则:BC=x,AB=,CD=,故选:B.【考点】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.6、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可.【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线是y=2(x−2)2;由“上加下减”的原则可知,抛物线y=2(x−2)2向下平移1个单位所得抛物线是y=2(x−2)2−1.故选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.二、多选题1、ABCD【解析】【分析】连接OD,CD是⊙O的切线,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等边三角形,∠C=∠BDC=30°,再结合在直角三角形中300所对的直角边等于斜边的一半,继而得到结论.【详解】解:如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故选项D成立;∴△OBD是等边三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故选项B成立;∴AB=2BC,故选项C成立;∴∠A=∠C,∴DA=DC,故选项A成立;综上所述,故选项ABCD均成立,故选:ABCD.【考点】本题考查了圆的有关性质的综合应用,在本题中借用切线的性质,求得相应角的度数是解题的关键.2、ABD【解析】【分析】根据三角形相似的判断方法逐个判断即可.【详解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合题意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合题意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故选项不符合题意;D、BD2=CD·DA,不能判定△BDC与△ABC,符合题意;故选:ABD.【考点】此题考查了三角形相似的判定方法,解题的关键是熟练掌握三角形相似的判定方法.3、ABD【解析】【分析】由已知条件易证DE∥BC,则△ABC∽△ADE,再由相似三角形的性质即可得到问题的选项.【详解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正确;∴△ABC∽△ADE,故A正确;∴DE:BC=AD:AB=1:3,故C错误;∴S△ABC=9S△ADE故D正确,∴其中成立的jABD,故选ABD.【考点】本题考查了平行四边形的性质以及相似三角形的判定和性质,证明DE∥BC是解题的关键.4、ABD【解析】【分析】证明△BAF≌△ADE,可判断选项A和选项B,设AE=2a,则EB=3a,正方形ABCD的边长为5a,求得BH=a,DH=a,利用反证法判断选项C;利用相似三角形的性质以及三角函数求得IG=a,即可判断选项D.【详解】解:∵AE:EB=2:3,∴设AE=2a,则EB=3a,正方形ABCD的边长为5a,∵四边形ABCD是正方形,AI⊥DE,∴AD=AB,∠DAB=∠ABF=∠AID=90°,∴∠BAF=90°-∠DAI=∠ADE,∴△BAF≌△ADE,∴BF=AE,故选项A正确;∴S△BAF=S△ADE,∴S△BAF-S△AEI=S△ADE-S△AEI,即S△ADI=S四边形BFIE,故选项B正确;∵四边形ABCD是正方形,边长为5a,∴BD=5a,BF∥AD,∴,∴BH=a,DH=a,假设EH⊥BD,则△BHE是等腰直角三角形,则BE=BH=3a,∴假设EH⊥BD不成立,故选项C错误;过点I作IM⊥AD于点M,过点I作IN⊥DC于点N,∵四边形ABCD是正方形,∴∠ADC=90°,∴四边形IMDN是矩形,∵DE=a,AE×AD=DE×AI,∴AI=a,∴DI==a,∵sin∠ADI=,cos∠ADI=,∴IM=a,DM=a,∵CG=DC,∴DG=a,∴NG=a,IN=DM=a,∴IG=a,∴IG=DG.故选项D正确;故选:ABD.【考点】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形,解题的关键是灵活运用所学知识解决问题,5、BCD【解析】【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】解:矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件,故A不符合题意;锐角三角形、正五边形、直角三角形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件,故B、C、D符合题意.故选BCD.【考点】此题主要考查了相似图形判定,注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.6、ABD【解析】【分析】根据相似三角形的判定方法求解即可.【详解】解:A、或,不能判定,符合题意;B、且,不能判定,符合题意;C、且,能判定,不符合题意;D、且,不能判定,符合题意.故选:ABD.【考点】此题考查了相似三角形的判定方法,解题的关键是熟练掌握相似三角形的判定方法.相似三角形的判定方法:两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似;两角对应相等的两个三角形相似.7、BCD【解析】【分析】先判断格中所画格点三角形为直角三角形,利用两组对应边的比相等且夹角对应相等的两个三角形相似,否则不相似,对各选项进行判断.【详解】解:由图知:∠ACB=90°,AC=2,BC=1,AC:BC=2,A选项中,三条线段的长为,因为,此三角形为直角三角形,长直角边与短直角边的比为2,所以A选项的方格中所画格点三角形(阴影部分)与△ABC相似,不符合题意;B选项中,长直角边与短直角边的比为3,所以B中格点三角形与△ABC不相似,符合题意;C选项中,三条线段的长为√,因为,此三角形为直角三角形,两直角边的比为1,所以C选项的方格中所画格点三角形(阴影部分)与△ABC不相似,符合题意;D选项中,三角形的两直角边的比为1:1.所以D中格点三角形与△ABC不相似,符合题意,故选:BCD.【考点】本题考查相似三角形的判定,能在格点中表示各个线段的长度和掌握相似三角形的判定定理是解决此题的关键.三、填空题1、25【解析】【分析】设草莓的零售价为x元/千克,销售收入为y元,由题意得y=30x2+1500x11880,再根据二次函数的性质解答即可.【详解】解:设草莓的零售价为x元/千克,销售收入为y元,由题意得,y=x[30030(x22)]+18×30(x22)=30x2+1500x11880,当时,y最大,∴当草莓的零售价为25元/千克时,种植户一天的销售收入最大.故答案为:25.【考点】本题考查二次函数的实际应用,熟练掌握二次函数的性质是解题关键.2、60【解析】【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A向下压的长度.【详解】解:如图;AM、BN都与水平线垂直,即AM∥BN;易知:△ACM∽△BCN;∴,∵AC与BC之比为6:1,∴,即AM=6BN;∴当BN≥10cm时,AM≥60cm;故要使这块石头滚动,至少要将杠杆的端点A向下压60cm.故答案为:60.【考点】本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键.3、【解析】【分析】根据三角函数的性质得,即可比较它们的大小关系.【详解】∵∴故答案为:<.【考点】本题考查了三角函数值大小比较的问题,掌握三角函数的性质是解题的关键.4、
1
【解析】【分析】(1)连接AO,DO,证明,可得,求出即可求解;(2)设,则,由勾股定理可得,即可求EF的最小值.【详解】解:(1)连接AO,DO,∵,∴,∵四边形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案为:1;(2)设,则,,在中,,∴当时,EF有最小值,故答案为:.【考点】本题考查正方形的性质,全等三角形的判定与性质,二次函数的性质,熟练掌握二次函数求最值的方法是解题的关键.5、.【解析】【分析】以DE的垂直平分线为y轴,AB所在的直线为x轴建立平面直角坐标系,设抛物线的表达式为y=ax2+1,因为△CDE是等腰直角三角形,DE=2,得点E的坐标为(1,2),可得抛物线的表达式为y=x2+1,把当y代入抛物线表达式,求得MH的长,再在Rt△FHM中,用勾股定理建立方程,求得所在的圆的半径.【详解】如图,以DE的垂直平分线为y轴,AB所在的直线为x轴建立平面直角坐标系,设所在的圆的圆心为P,半径为r,过F作y轴的垂线交y轴于H,设抛物线的表达式为y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴点E的坐标为(1,2),代入抛物线的表达式,得:2=a+1,a=1,∴抛物线的表达式为y=x2+1,当y时,即,解得:,∴FH.∵∠FHM=90°,DE与所在的圆相切,∴,解得:,∴所在的圆的半径为.故答案为.【考点】本题考查了圆的切线的性质,待定系数法求抛物线的表达式,垂径定理.解题的关键是建立合适的平面直角坐标系得出抛物线的表达式.6、【解析】【分析】根据题意和题目中的数据,可以计算出AC和BC的长,然后即可得到AB的长,从而可以解答本题.【详解】解:∵PC⊥AC,在点A处测得点P在北偏东60°方向上,∴∠PCA=90°,∠PAC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在点B处测得点P在北偏东30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴千米,∴(千米),故答案为:.【考点】本题考查解直角三角形的应用-方向角问题,解答本题的关键是明确题意,利用数形结合的思想解答.7、<【解析】【分析】把点A(3,a),B(-1,b)代入函数上求出a、b的值,再进行比较即可.【详解】把点A(3,a)代入函数可得,a=-1;把点B(-1,b)代入函数可得,b=3;∵3>-1,即a<b.故答案为:<.【考点】本题比较简单,考查了反比例函数图象上点的坐标特点,即反比例函数图象上点的坐标一定适合此函数的解析式.四、解答题1、(1),;(2);(3);(4)或.【解析】【分析】(1)根据P点的运动速度和BD的长度即可出结果;(2)画出图象,根据三角形的相似求出各个线段长,即可解决;(3)分情况讨论,矩形与重叠部分面积即为矩形面积减去△ABC外部的小三角形面积,通过三角函数计算出各边长求面积即可;(4)要想使被直线分割成的两部分能拼成不重叠且无缝隙的图形恰好是三角形,则需要被分割的是两个至少有一条相等边长的直角三角形,或者直线正好过正方形一条边的中点,分情况画图求解即可.【详解】解:(1)∵,为的中点,∴,P从B运动到点D所需时间为1s,由题意可知,;(2)如图所示,由题意得,∴,∵,,,∴,∴,由四边形是矩形可知,∠QPD=∠MDP=90°,PQ=DM,即∠APQ=∠BDM=90°,∵∠B=∠B,∠BDM=∠ACB=90°,∴△MDB∽△ACB,∴,即,∴,即∵∠A=∠A,∠APQ=∠ACB=90°,∴△APQ∽△ACB,∴,即,解得;(3)当时,如图,DM交BC于点F,由矩形可知PD∥QM,∴∠FQM=∠B=30°,此时,∴,∴,解得,,同理,,解得,,,当时,如图,DM交BC于点F,QM交BC于E,,由题意可知∠A=60°,,∴,即,,得,∴,∵,∴,,,∴,综上所述:;(4)如图所示,当Q与C重合时,满足条件,由前面解题过程可知此时,当PQ=DM时,此时直线CD正好过QM的中点,满足条件,此时,当直线CD正好过PQ的中点G时,满足条件,如图,由前面计算可知,则,,解得,综上所述,或.【考点】本题考查了动点问题,熟练掌握三角函数,矩形的性质是解题的关键.2、船的航行速度为m/min.【解析】【分析】连接AB,过点C作CD⊥AB交于点D,根据题意得出,,CD=6米,利用锐角三角函数得出米,米,结合图形及速度求法即可得出结果.【详解】解:如图所示,连接AB,过点C作CD⊥AB交于点D,根据题意可得:,,CD=6米,在中,(米),在中,米,∴米,∵船长为3米,∴船航行距离为:米,∴船的速度为:,答:船的航行速度为m/min.【考点】本题主要考查锐角三角函数的实际应用,理解题意,构建直角三角形是解题关键.3、(1);(2);(3)【解析】【分析】(1)由抛物线的对称轴为直线,即可求得点E的坐标;在y=ax2﹣3ax﹣4a(a<0)令y=0可得关于x的方程ax2﹣3ax﹣4a=0,解方程即可求得点A的坐标;(2)如图1,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC,结合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,这样由tan∠OBC=即可列出关于a的方程,解方程求得a的值即可得到抛物线的解析式;(3)由折叠的性质和MN∥y轴可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由点B的坐标为(4,0),点C的坐标为(0,3)可得线段BC=5,直线BC的解析式为y=﹣x+3,由此即可得到M、N的坐标分别为(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,这样由sin∠BCO=即可解得CM=m,然后分点N在直线BC的上方和下方两种情况用含m的代数式表达出MN的长度,结合MN=CM即可列出关于m的方程,解方程即可求得对应的m的值,从而得到对应的点Q的坐标.【详解】解:(1)∵对称轴x=,∴点E坐标(,0),令y=0,则有ax2﹣3ax﹣4a=0,∴x=﹣1或4,∴点A坐标(﹣1,0).故答案分别为(,0),(﹣1,0).(2)如图①中,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC,∵DE=OE=,EB=,OC=﹣4a,∴DB=,∵tan∠OBC=,∴,解得a=,∴抛物线解析式为y=.(3)如图②中,由题意∠M′CN=∠NCB,∵MN∥OM′,∴∠M′CN=∠CNM,∴MN=CM,∵点B的坐标为(4,0),点C的坐标为(0,3),∴直线BC解析式为y=﹣x+3,BC=5,∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F,∵sin∠BCO=,∴,∴CM=m,①当N在直线BC上方时,﹣x2+x+3﹣(﹣x+3)=m,解得:m=或0(舍弃),∴Q1(,0).②当N在直线BC下方时,(﹣m+3)﹣(﹣m2+m+3)=m,解得m=或0(舍弃),∴Q2(,0),综上所述:点Q坐标为(,0)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨境电商海外仓管理系统开发协议2025年运营维护协议
- 口罩生产供应协议2025年价格版
- 考研住宿服务合同2025年签订条款
- 2025年AI助手推广合作合同协议
- 风机偏航轴承密封圈老化整治技术方案
- 会计日企面试题及答案
- 深度解析(2026)《GBT 39373-2020皮革 色牢度试验 耐溶剂色牢度》(2026年)深度解析
- 深度解析(2026)《GBT 39285-2020钯化合物分析方法 氯含量的测定 离子色谱法》(2026年)深度解析
- 余杭社工面试题目及答案
- 深度解析(2026)《GBT 34644-2017锆及锆合金管材涡流检测方法》
- GB/T 4457.4-2002机械制图图样画法图线
- GB/T 3651-2008金属高温导热系数测量方法
- GB/T 17196-2017连接器件连接铜导线用的扁形快速连接端头安全要求
- 小学英语五年级上册人教版(PEP)知识竞赛题
- XX县尸体解剖检验中心可行性研究报告项目建议书
- 微型往复活塞空压机使用维护专项说明书
- 曼昆《经济学原理》(微观经济学分册)第8版 全部答案
- 军事地形学知识总结
- 酒店安全生产责任制清单(全套模板)
- 管道(沟槽)开挖支护方案
- 插座盒外壳注塑模具设计
评论
0/150
提交评论