




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》同步练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是()A.1 B.1.5 C.2 D.42、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A.菱形 B.矩形 C.正方形 D.三角形3、如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得点A,C之间的距离为6cm,点B,D之间的距离为8cm,则纸条的宽为()A.5cm B.4.8cm C.4.6cm D.4cm4、如图,的对角线交于点O,E是CD的中点,若,则的值为()A.2 B.4 C.8 D.165、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为()A.5 B.4 C.3 D.2第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在正方形ABCD中,,E是AB的中点,P是AD上任意一点,连接PE,PC,若是等腰三角形,则AP的长可能是______.2、若一个菱形的两条对角线的长为3和4,则菱形的面积为___________.3、在菱形ABCD中,∠B=60°,BC=2cm,M为AB的中点,N为BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE,CE,当△CDE为等腰三角形时,线段BN的长为_____.4、如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是_____.5、如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.三、解答题(5小题,每小题10分,共计50分)1、如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.2、如图,平行四边形ABCD中,点E、F分别在CD、BC的延长线上,.
(1)求证:D是EC中点;(2)若,于点F,直接写出图中与CF相等的线段.3、在中,,斜边,过点作,以AB为边作菱形ABEF,若,求的面积.4、如图,在平行四边形ABCD中,,点E、F分别是BC、AD的中点.(1)求证:;(2)当时,在不添加辅助线的情况下,直接写出图中等于的2倍的所有角.5、已知:如图,在四边形中,,.求证:(1)BECD;(2)四边形是矩形.-参考答案-一、单选题1、C【解析】【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.【详解】解:取线段AC的中点G,连接EG,如图所示.∵AC=BC=8,∠BCA=60°,∴△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=2.故选:C.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.2、B【解析】【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形.【详解】解:如图,∵、、、分别是、、、的中点,∴,,,∴四边形是平行四边形,∵,∴,∴平行四边形是矩形,又与不一定相等,与不一定相等,矩形不一定是正方形,故选:B.【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键.3、B【解析】【分析】由题意作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS得平行四边形ABCD是菱形,再根据勾股定理求出AB,最后利用菱形ABCD的面积建立关系得出纸条的宽AR的长.【详解】解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=3cm,OB=4cm,∴AB==5cm,∵平行四边形ABCD是菱形,∴AB=BC=5cm,∴菱形ABCD的面积,即,解得:cm.故选:B.【点睛】本题主要考查菱形的判定以及勾股定理等知识,解题的关键是掌握一组邻边相等的平行四边形是菱形以及菱形的面积等于对角线相乘的一半.4、B【解析】【分析】根据平行四边形的性质可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根据三角形的中线平分三角形的面积可得根据三角形的中线平分三角形的面积可得S△DOE=4,进而可得答案.【详解】解:∵四边形ABCD是平行四边形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵点E是CD的中点,∴S△DOE=S△COD=4,故选:B.【点睛】此题主要考查了平行四边形的性质,以及三角形中线的性质,掌握平行四边形的性质,三角形的中线平分三角形的面积是解答本题的关键.5、A【解析】【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,∴CD=AB,∵AB的长为10,∴DC=5,故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.二、填空题1、或或【解析】【分析】分三种情况:当时,当时,当时,利用等腰三角形的性质和正方形的性质进行求解即可.【详解】解:如图1,当时,∵四边形ABCD是正方形,∴∠B=∠D=90°,BC=DC,∴,∴则,∵E是AB的中点,∴∴;如图2.当点P与点D重合时,∵四边形ABCD是正方形,∴AD=BC,∠A=∠B=90°,∵E是AB的中点,∴AE=BE,∴△ADE≌△BCE(SAS),∴即PE=CE,是等腰三角形.∴;如图3.当时,设,则,在直角△PDC中,,在直角△AEP中,,则.解得,即.综上所述,AP的长可能是1或2或.故答案为:1或2或.【点睛】本题主要考查了等腰三角形的性质,正方形的性质,全等三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握等腰三角形的性质和正方形的性质.2、6【解析】【分析】由题意直接由菱形的面积等于对角线乘积的一半进行计算即可.【详解】解:菱形的面积.故答案为:6.【点睛】本题考查菱形的性质,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.3、cm或2cm【解析】【分析】分两种情况:①如图1,当DE=DC时,连接DM,作DG⊥BC于G,由菱形的性质得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,证明△ADM≌△EDM,得出∠A=∠DEM=120°,证出D、E、N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如图2,当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,△CDE是等边三角形,BN=BC=2(含CE=DE这种情况).【详解】解:分两种情况,①如图1,当DE=DC时,连接DM,作DG⊥BC于G,∵四边形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M为AB的中点,∴AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:,解得:x=,即BN=cm;②当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图2所示:CE=CD=DE=DA,△CDE是等边三角形,BN=BC=2cm(符合题干要求);综上所述,当△CDE为等腰三角形时,线段BN的长为cm或2cm;故答案为cm或2cm.【点睛】本题考查了折叠变换的性质、菱形的性质、全等三角形的判定与性质、三点共线、勾股定理、直角三角形的性质、等腰三角形的性质等知识,熟练掌握并灵活运用是解题的关键.4、【解析】【分析】设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果.【详解】解:设,四边形为正方形,,,点为的中点,,,,,四边形为正方形,,,故答案为:.【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长.5、####【解析】【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵点E、F分别是AO、AD的中点,∴EF=OD=2.5cm,故答案为:2.5.【点睛】本题考查了矩形的性质的应用,勾股定理,三角形中位线的应用,解本题的关键是求出OD长及证明EF=OD.三、解答题1、(1)见解析;(2)△BMN面积的最小值为【分析】(1)连接BD,证明△AMB≌△DNB,则可得BM=BN,∠MBA=∠NBD,由菱形的性质易得∠MBN=60゜,从而可证得结论成立;(2)过点B作BE⊥MN于点E.【详解】(1)证明:如图所示,连接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等边三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等边三角形;(2)过点B作BE⊥MN于点E.设BM=BN=MN=x,则,故,∴当BM⊥AD时,x最小,此时,,.∴△BMN面积的最小值为.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,垂线段最短,全等三角形的判定与性质等知识,关键是作辅助线证三角形全等.2、(1)见祥解;(2)AB=DC=DE=DF=CF,证明见详解.【分析】(1)根据四边形ABCD是平行四边形,得出AB∥CD即(AB∥ED),AB=CD,根据,可证四边形ABDE为平行四边形,得出AB=DE即可;(2)根据EF⊥BF,CD=ED,根据直角三角形斜边中线可得DF=CD=ED,再证△DCF为等边三角形即可.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD即(AB∥ED),AB=CD,∵,∴四边形ABDE为平行四边形,∴AB=DE,∴CD=ED,∴点D为CE中点;(2)结论为:AB=DC=DE=DF=CF,∵EF⊥BF,CD=ED,∴DF=CD=ED,∵AB∥CD,∠ABC=60°,∴∠DCF=∠ABC=60°,∴△DCF为等边三角形,∴CF=CD=DF=AB=ED.【点睛】本题考查平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质,掌握平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质是解题关键.3、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中,利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点四边形ABEF为菱形,,,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水的电离 溶液的酸碱性与pH【学生版】-新高二化学暑假专项提升(人教版)
- 老年人外出保健知识培训课件
- 诗歌鉴赏之表达技巧-高考语文一轮复习(新高考地区专用)
- 认识社会与价值选择-2026高考政治一轮复习单元测试卷(含答案)
- 人教版高考历史一轮复习讲义-医疗与公共卫生(含解析)
- CN120201698A 一种简化变频器控制的变频器机柜
- 老师课件自我介绍
- 《喷油涡旋空气压缩机》编制说明
- 翻页时钟课件
- 2025年度商业地产商铺转租服务协议范本
- 2025年交社保免责协议书
- GB/T 10125-2021人造气氛腐蚀试验盐雾试验
- T-JSYLA 00007-2022 江苏省智慧公园建设指南
- 热控安装工程施工方案
- 医院水、电、气故障报修、排查、处理流程1
- 八年级上册物理 第一章 第一节长度和时间的测量课件
- 数控加工中心培训课件
- 《思想政治教育专业导论》课程教学大纲
- 产品可追溯性模拟演练(成品-原料)记录
- 中国—东盟自贸区
- 安全帽试验作业指导书实施细则
评论
0/150
提交评论