中考数学总复习《 圆》真题含完整答案详解【典优】_第1页
中考数学总复习《 圆》真题含完整答案详解【典优】_第2页
中考数学总复习《 圆》真题含完整答案详解【典优】_第3页
中考数学总复习《 圆》真题含完整答案详解【典优】_第4页
中考数学总复习《 圆》真题含完整答案详解【典优】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《圆》真题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A. B. C. D.2、如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为(

)A.38° B.52° C.76° D.104°3、已知点在上.则下列命题为真命题的是(

)A.若半径平分弦.则四边形是平行四边形B.若四边形是平行四边形.则C.若.则弦平分半径D.若弦平分半径.则半径平分弦4、如图,一段公路的转弯处是一段圆弧,则的展直长度为()A.3π B.6π C.9π D.12π5、如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、数学课上,老师让学生用尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为小明这种作法中判断∠ACB是直角的依据是_____.2、如图,正方形ABCD的边长为2a,E为BC边的中点,的圆心分别在边AB、CD上,这两段圆弧在正方形内交于点F,则E、F间的距离为.3、已知直线m与半径为5cm的⊙O相切于点P,AB是⊙O的一条弦,且,若AB=6cm,则直线m与弦AB之间的距离为_____.4、如图,在⊙O中,,,则图中阴影部分的面积是_________.(结果保留)5、如图是四个全等的正八边形和一个正方形拼成的图案,已知正方形的面积为4,则一个正八边形的面积为____.三、解答题(5小题,每小题10分,共计50分)1、如图,已知四边形ABCD内接于⊙O,且已知∠ADC=120°;请仅用无刻度直尺作出一个30°的圆周角.要求:(1)保留作图痕迹,写出作法,写明答案;(2)证明你的作法的正确性.2、如图,在△ABC中,AB=AC,∠BAC=120°,点D在边BC上,⊙O经过点A和点B且与边BC相交于点D.(1)判断AC与⊙O的位置关系,并说明理由.(2)当CD=5时,求⊙O的半径.3、如图,一根长的绳子,一端拴在柱子上,另一端拴着一只羊(羊只能在草地上活动),请画出羊的活动区域.4、如图,点C是射线上的动点,四边形是矩形,对角线交于点O,的平分线交边于点P,交射线于点F,点E在线段上(不与点P重合),连接,若.(1)证明:(2)点Q在线段上,连接、、,当时,是否存在的情形?请说明理由.5、如图,AB为⊙O的直径,C、D为⊙O上的两个点,==,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.-参考答案-一、单选题1、C【解析】【分析】先依据题意画出图形,如图(见解析),过点A作于D,利用勾股定理可求出AD的长,再根据三角形内切圆的性质、三角形的面积公式即可得出答案.【详解】解:如图,,内切圆O的半径为,切点为,则过点A作于D,设,则由勾股定理得:则,即解得,即又即解得则内切圆的半径为故选:C.【考点】本题考查了三角形内切圆的性质、勾股定理等知识点,读懂题意,正确画出图形,并求出AD的长是解题关键.2、C【解析】【分析】根据半径相等得到OM=ON,则∠M=∠N=52°,然后根据三角形内角和定理计算∠MON的度数.【详解】∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°-2×52°=76°.故选C.【考点】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).3、B【解析】【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.【详解】A.∵半径平分弦,∴OB⊥AC,AB=BC,不能判断四边形OABC是平行四边形,假命题;B.∵四边形是平行四边形,且OA=OC,∴四边形是菱形,∴OA=AB=OB,OA∥BC,∴△OAB是等边三角形,∴∠OAB=60º,∴∠ABC=120º,真命题;C.∵,∴∠AOC=120º,不能判断出弦平分半径,假命题;D.只有当弦垂直平分半径时,半径平分弦,所以是假命题,故选:B.【考点】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假.4、B【解析】【详解】分析:直接利用弧长公式计算得出答案.详解:的展直长度为:=6π(m).故选B.点睛:此题主要考查了弧长计算,正确掌握弧长公式是解题关键.5、D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【考点】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.二、填空题1、直径所对的圆周角是直角【解析】【分析】根据圆周角定理即可得出结论.【详解】解:根据“直径所对的圆周角是直角”得出.故答案为直径所对的圆周角是直角.【考点】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.2、a.【解析】【分析】作DE的中垂线交CD于G,则G为的圆心,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,依据勾股定理可得GE=FG=a,根据四边形EGFH是菱形,四边形BCGH是矩形,即可得到Rt△OEG中,OE=a,即可得到EF=a.【详解】如图,作DE的中垂线交CD于G,则G为的圆心,同理可得,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,设GE=GD=x,则CG=2a-x,CE=a,Rt△CEG中,(2a-x)2+a2=x2,解得x=a,∴GE=FG=a,同理可得,EH=FH=a,∴四边形EGFH是菱形,四边形BCGH是矩形,∴GO=BC=a,∴Rt△OEG中,OE=,∴EF=a,故答案为a.【考点】本题主要考查了正方形的性质以及相交两圆的性质,相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.注意:在习题中常常通过公共弦在两圆之间建立联系.3、1cm或9cm【解析】【分析】根据题意:分两种情况进行分析,①当AB与直线位于圆心O的同侧时,连接OA,OP交AB于点E;②当AB与直线m位于圆心O的异侧时,连接OA’,OP交于点F;结合图形利用圆的基本性质及勾股定理进行求解即可得出结果.【详解】解:根据题意:分两种情况进行分析,①如图所示,当AB与直线位于圆心O的同侧时,连接OA,OP交AB于点E,∵,,∴,,∵直线m为圆O的切线,∴,在中,,∴,②如图所示,当AB与直线m位于圆心O的异侧时,连接OA’,OP交于点F,结合图形及①可得,∴PF=PO+OF=5+4=9cm,故答案为:或.【考点】题目主要考查圆的基本性质及勾股定理解直角三角形,理解题意,作出相应图形进行求解是解题关键.4、【解析】【分析】由,根据圆周角定理得出,根据S阴影=S扇形AOB-可得出结论.【详解】解:∵,∴,∴S阴影=S扇形AOB-,故答案为:.【考点】本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键.5、【解析】【分析】根据正方形的性质得到AB=2,根据由正八边形的特点求出∠AOB的度数,过点B作BD⊥OA于点D,根据勾股定理求出BD的长,由三角形的面积公式求出△AOB的面积,进而可得出结论.【详解】解:设正八边形的中心为O,连接OA,OB,如图所示,∵正方形的面积为4,∴AB=2,∵AB是正八边形的一条边,∴∠AOB==45°.过点B作BD⊥OA于点D,设BD=x,则OD=x,OB=OA=x,∴AD=x-x,在Rt△ADB中,BD2+AD2=AB2,即x2+(x-x)2=22,解得x2=2+,∴S△AOB=OA•BD=×x2=+1,∴S正八边形=8S△AOB=8×(+1)=8+8,故答案为:8+8.【考点】本题考查的是正多边形和圆,正方形的性质,三角形面积的计算,根据题意画出图形,利用数形结合求解是解答此题的关键.三、解答题1、(1)见解析.(2)见解析.【解析】【分析】(1)作直线OA交⊙O于E,连接AC,EC,∠EAC即为所求;(2)根据圆内接四边形的性质可求出∠AEC=60°,根据直径所对的圆周角等于90°即可得∠EAC=30°.【详解】(1)作直线OA交⊙O于E,连接AC,EC,∠EAC即为所求;(2)∵AE是直径,∴∠ACE=90°,∵四边形AECD内接于圆,∴∠ADC+∠AEC=180°,∵∠ADC=120°,∴∠AEC=60°,∴∠EAC=90°﹣60°=30°.【考点】本题考查圆的内接四边形的性质及圆周角定理,圆的内接四边形的对角互补;直径所对的圆周角等于90°;熟练掌握相关定理及性质是解题关键.2、(1)AC与⊙O相切,理由见解析(2)⊙O的半径为5【解析】【分析】(1)连接AO,根据等腰三角形的性质得到∠B=∠C=30°,∠BAO=∠B=30°,求得∠AOC=60°,根据三角形的内角和得到∠OAC=180°-60°-30°=90°,于是得到AC是⊙O的切线;(2)连接AD,推出△AOD是等边三角形,得到AD=OD,∠ADO=60°,求得∠DAC=∠ADO-∠C=30°,得到AD=CD=5,于是得到结论.(1)解:AC是⊙O的切线,理由如下:连接AO,∵AB=AC,∠BAC=120°,∴∠B=∠C=(180°-∠BAC)=30°,∵AO=BO,∴∠BAO=∠B=30°,∴∠AOC=2∠B=60°,∴∠OAC=180°-∠AOC-∠C=180°-60°-30°=90°,∵AO是⊙O的半径,∴AC是⊙O的切线;(2)解:连接AD,∵AO=OD,∠AOD=60°,∴△AOD是等边三角形,∴AD=OD,∠ADO=60°,∴∠DAC=∠ADO-∠C=30°,∴∠DAC=∠C=30°,∴AD=CD=OD=5,∴⊙D的半径为5.【考点】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.3、见解析【解析】【分析】根据题意画出两个扇形即可得到羊的活动区域.【详解】解:如图,以点O为圆心,5m长的绳子为半径画弧交草地左边界于点A,交OD的延长线于点B,再以D为圆心,DB长为半径画弧交草地的右边界于点C,则扇形AOB和扇形BDC部分即为羊的活动区域.【考点】本题考查了作图﹣应用与设计作图、扇形面积,根据题意画扇形是解决本题的关键.4、(1)见解析(2)不存在的情形,理由见解析【解析】【分析】(1)根据矩形的性质可得∠DAF=∠CFA,从而得到∠CAF=∠CFA,进而AC=CF,再由OB=OC,可得∠OBC=∠OCB,然后根据,可得∠ACF=2∠ECF,即可求证;(2)先假设DQ=PC,可先证得点A、C、E、D四点共圆,从而得到∠DAE=∠DCE,∠CAE=∠CDE,再由AF平分∠CAD,可得DE=CE,进而得到点E在CD的垂直平分线上,再由,可得∠AQC=∠CPQ,从而得到CP=CQ,CQ=DQ,进而得到点Q在CD的垂直平分线上,得到AF∥BC,AF交射线于点F相矛盾,即可求解.(1)证明:在矩形ABCD中,AD∥BC,OB=OC,∴∠DAF=∠CFA,∵AF平分∠CAD,∴∠DAF=∠CAF,∴∠CAF=∠CFA,∴AC=CF,∵OB=OC,∴∠OBC=∠OCB,∵,∴2∠ECF+∠OCB=180°,∵∠OCB+∠ACF=180°,∴∠ACF=2∠ECF,∴∠ACE=∠FCE,∴AE=EF;(2)解:不存在PC=DQ,理由如下:假设DQ=PC,∵四边形ABCD是矩形,∴∠ADC=90°,由(1)得:AC=CF,AE=EF,∴CE⊥AF,即∠AEC=90°,∴∠AEC=∠ADC=90°,∴点A、C、E、D四点共圆,∴∠DAE=∠DCE,∠CAE=∠CDE,∵AF平分∠CAD,∴∠CAE=∠DAE=∠DCE=∠EDC,∴DE=CE,∴点E在CD的垂直平分线上,∵,∠CPQ=∠EDC+∠DEA,∴∠AQC=∠CPQ,∴CP=CQ,∵CP=DQ,∴CQ=DQ,∴点Q在CD的垂直平分线上,∴EQ⊥CD,即AF⊥CD,∵BC⊥CD,∴AF∥BC,AF交射线于点F相矛盾,∴假设不成立,原结论成立,即当时,不存在的情形.【考点】本题主要考查了矩形的性质,等腰三角形的判定和性质,四点共圆问题,反证法,线段垂直平分线的判定,熟练掌握相关知识点,利用四点共圆解决问题是解题的关键.5、(1)见解析;(2)3【解析】【分析】(1)连接OD,根据已知条件得到∠BOD=180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论