综合解析广东省吴川市中考数学真题分类(平行线的证明)汇编专题测试试题(含详细解析)_第1页
综合解析广东省吴川市中考数学真题分类(平行线的证明)汇编专题测试试题(含详细解析)_第2页
综合解析广东省吴川市中考数学真题分类(平行线的证明)汇编专题测试试题(含详细解析)_第3页
综合解析广东省吴川市中考数学真题分类(平行线的证明)汇编专题测试试题(含详细解析)_第4页
综合解析广东省吴川市中考数学真题分类(平行线的证明)汇编专题测试试题(含详细解析)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省吴川市中考数学真题分类(平行线的证明)汇编专题测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75° B.60° C.45° D.40°2、如图,在△ABC中,∠A=30°,∠B=50°,将点A与点B分别沿MN和EF折叠,使点A、B与点C重合,则∠NCF的度数为(

).A.22° B.21° C.20° D.19°3、两个直角三角板如图摆放,其中,,,AB与DF交于点M.若,则的大小为(

)A. B. C. D.4、如图点E在BC的延长线上,则下列条件中,不能判定ABCD的是(

)A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180°5、如图,在三角形ABC中,,,D是BC上一点,将三角形ABD沿AD翻折后得到三角形AED,边AE交射线BC于点F,若,则(

)A.120° B.135° C.110° D.150°6、如图,EF与的边BC,AC相交,则与的大小关系为(

).A. B.C. D.大小关系取决于的度数7、如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠B=25°,∠1=70°,则∠C的大小为()A.40° B.50° C.75° D.85°8、下列命题中,假命题是(

)A.正方形都相似 B.对角线和一边对应成比例的矩形相似C.等腰直角三角形都相似 D.底角为60°的两个等腰梯形相似第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、下图是某工人加工的一个机器零件(数据如图),经过测量不符合标准.标准要求是:,且、、保持不变为了达到标准,工人在保持不变情况下,应将图中____(填“增大”或“减小”)_____度.2、“等边三角形是锐角三角形”的逆命题是_________.3、如图,在中,,将沿直线m翻折,点B落在点D的位置,则__________.4、两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果___________,那么这两条直线平行.这个判定方法可简述为:_________,两直线平行.5、如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)6、如图,射线AB与射线CD平行,点F为射线AB上的一定点,连接CF,点P是射线CD上的一个动点(不包括端点C),将沿PF折叠,使点C落在点E处.若,当点E到点A的距离最大时,_____.7、如图,将三角形纸片ABC沿EF折叠,使得A点落在BC上点D处,连接DE,DF,.设,,则α与β之间的数量关系是________.三、解答题(7小题,每小题10分,共计70分)1、如图,,.(1)试说明;(2)若,且,求的度数.2、已知:如图1,,BD平分,,过点A作直线,延长CD交MN于点E(1)当时,的度数为______.(2)如图2,当时,求的度数;(3)设,用含x的代数式表示的度数.3、已知:如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求证:AC=BD;(2)求∠APB的度数.4、如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.5、如图,在三角形ABC中CD为的平分线,交AB于点D,,.(1)求证:;(2)如果,,试证明.6、如图,已知于点,于点,,试说明.解:因为(已知),所以().同理.所以().即.因为(已知),所以().所以().7、请阅读下列材料,并完成相应的任务:有趣的“飞镖图”如图,这种形似飞镖的四边形,可以形象地称它为“飞镖图”.当我们仔细观察后发现,它实际上就是凹四边形.那么它具有哪些性质呢?又将怎样应用呢?下面我们进行认识与探究:凹四边形通俗地说,就是一个角“凹”进去的四边形,其性质有:凹四边形中最大内角外面的角等于其余三个内角之和.(即如图1,∠ADB=∠A+∠B+∠C)理由如下:方法一:如图2,连接AB,则在△ABC中,∠C+∠CAB+∠CBA=180°,即∠1+∠2+∠3+∠4+∠C=180°,又∵在△ABD中,∠1+∠2+∠ADB=180°,∴∠ADB=∠3+∠4+∠C,即∠ADB=∠CAD+∠CBD+∠C.方法二:如图3,连接CD并延长至F,∵∠1和∠3分别是△ACD和△BCD的一个外角,......大家在探究的过程中,还发现有很多方法可以证明这一结论,你有自己的方法吗?任务:(1)填空:“方法一”主要依据的一个数学定理是;(2)探索:根据“方法二”中辅助线的添加方式,写出该证明过程的剩余部分;(3)应用:如图4,AE是∠CAD的平分线,BF是∠CBD的平分线,AE与BF交于G,若∠ADB=150°,∠AGB=110°,请你直接写出∠C的大小.-参考答案-一、单选题1、C【解析】【分析】利用三角形内角和定理求解即可.【详解】因为三角形内角和为180°,且∠A=60°,∠B=75°,所以∠C=180°–60°–75°=45°.【考点】三角形内角和定理是常考的知识点.2、C【解析】【分析】根据三角形的内角和定理可得∠ACB=100°,再由折叠的性质可得∠ACN=∠A=30°,∠FCE=∠B=50°,即可求解.【详解】解:∵∠A=30°,∠B=50°,∴∠ACB=100°,∵将点A与点B分别沿MN和EF折叠,使点A、B与点C重合,∴∠ACN=∠A=30°,∠FCE=∠B=50°,∴∠NCF=20°,故选:C.【考点】本题主要考查了图形的折叠的性质、三角形内角和定理、熟练掌握图形的折叠的性质、三角形内角和定理是解题的关键.3、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案.【详解】由图可得∵,∴∴故选:C.【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.4、C【解析】【分析】根据平行线的判定定理进行逐一分析解答即可.【详解】解:A、正确,符合“内错角相等,两条直线平行”的判定定理;B、正确,符合“同位角相等,两条直线平行”的判定定理;C、错误,若∠3=∠4,则AD∥BE;D、正确,符合“同旁内角互补,两条直线平行”的判定定理;故选:C.【考点】本题考查的是平行线的判定定理,比较简单.5、A【解析】【分析】由得到∠FDE=∠C=60°,由折叠的性质知∠DEF=∠B=30°,得到∠DFE=180°-∠FDE-∠DEF=90°,由外角的性质得∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,进一步求得∠ADC=60°,进一步求得∠BDA.【详解】解:∵,∴∠FDE=∠C=60°,∵三角形ABD沿AD翻折后得到三角形AED,∴∠DEF=∠B=30°,∴∠DFE=180°-∠FDE-∠DEF=90°,∵∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,∴∠ADC+60°+∠ADC=180°,∴∠ADC=60°,∴∠BDA=∠ADC+60°=120°,故选:A【考点】此题考查了折叠的性质,平行线性质,外角的性质等知识,熟练掌握折叠的性质是解题的关键.6、C【解析】【分析】根据对顶角相等和三角形的内角和定理即可得结论.【详解】解:∵∠3=∠CEF,∠4=∠CFE∴∠CEF+∠CFE+∠C=∠3+∠4+∠C=180°又∵∠1+∠2+∠C=180°∴故选:C【考点】本题主要考查对顶角的性质和三角形的内角和定理,掌握对顶角的性质和三角形的内角和定理是解题的关键.7、B【解析】【分析】根据三角形内角和定理可求出的大小,再根据三角形外角性质即可求出的大小.【详解】∵,,∴,∴.故选B.【考点】本题考查三角形内角和定理和三角形外角的性质.利用数形结合的思想是解答本题的关键.8、B【解析】【分析】根据命题的定义判断真假即可;【详解】B没说清楚一边是矩形的长还是宽;故答案选B.【考点】本题主要考查了命题的知识点,准确判断是解题的关键.二、填空题1、

减小

15【解析】【分析】延长EF到H与CD交于H,先利用对顶角的性质和三角形内角和定理求出DCE=60°,然后根据三角形外角的性质得到∠DHE=∠E+∠DCE=100°,∠DFE=∠D+∠DHF,由此求解即可.【详解】解:如图,延长EF到H与CD交于H,∵∠DCE=∠ACB=180°-∠A-∠B,∠A=70°,∠B=50°,∴∠DCE=60°,∴∠DHE=∠E+∠DCE=100°,∵∠DFE=∠D+∠DHF,∴∠D=∠DFE-∠DHF=120°-100°=20°,∴∠D从35°减小到20°,减小了15°,故答案为:减小,15.【考点】本题主要考查了三角形内角和定理,三角形外角的性质,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.2、锐角三角形是等边三角形【解析】【分析】交换题目中的题设和结论即可.【详解】解:原命题“等边三角形是锐角三角形”的条件是“一个三角形是等边三角形”,结论是“这个三角形是锐角三角形”,互换条件和结论可得到逆命题“如果一个三角形是锐角三角形,那么这个三角形是等边三角形”.简化为“锐角三角形是等边三角形”,故答案为:锐角三角形是等边三角形.【考点】本题考查了命题与逆命题,能准确找到命题中的题设和结论是解题的关键.3、【解析】【分析】根据折叠得出∠D=∠B=28°,根据三角形的外角性质得出∠1=∠B+∠BEF,∠BEF=∠2+∠D,求出∠1=∠B+∠2+∠D即可.【详解】解:如图,∵∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1-∠2=∠B+∠D=28°+28°=56°,故答案为:.【考点】本题考查了三角形的外角性质和折叠的性质,能熟记三角形的外角性质是解此题的关键,注意:三角形的一个外角等于与它不相邻的两个内角的和.4、

同位角相等(答案不唯一)

同位角相等(答案不唯一)【解析】【分析】根据平行线的判定定理解答即可.【详解】两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.这个判定方法可简述为:同位角相等,两直线平行.故答案为:同位角相等,同位角相等.【考点】本题主要考查平行线的判定定理,属于基础题,熟练掌握平行线的判定定理是解题关键.5、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE【解析】【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断(答案不唯一).【详解】解:若,则BC∥AD;若∠C+∠ADC=180°,则BC∥AD;若∠CBD=∠ADB,则BC∥AD;若∠C=∠CDE,则BC∥AD;故答案为∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)【考点】本题主要考查了平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.6、##59度【解析】【分析】利用三角形三边关系可知:当E落在AB上时,AE距离最大,利用且,得到,再根据折叠性质可知:,利用补角可知,进一步可求出.【详解】解:利用两边之和大于第三边可知:当E落在AB上时,AE距离最大,如图:∵且,∴,∵折叠得到,∴,∵,∴.故答案为:【考点】本题考查三角形的三边关系,平行线的性质,折叠的性质,补角,角平分线,解题的关键是找出:当E落在AB上时,AE距离最大,再解答即可.7、【解析】【分析】由折叠的性质可知:,再利用三角形内角和定理及角之间的关系证明,,即可找出α与β之间的数量关系.【详解】解:由折叠的性质可知:,∵,∴,∴,∵,,∴,∴,故答案为:.【考点】本题考查折叠的性质,三角形内角和定理,解题的关键是根据折叠的性质求出,根据角之间的关系求出,.三、解答题1、(1)见解析(2)35°【解析】【分析】(1)根据,可得BM∥CN,从而得到∠CBM=∠BCN,再由,可得∠ABC=∠BCD,即可求证;(2)根据对顶角相等可得∠ABD=110°,再由三角形的内角和定理可得∠BAD=35°,然后根据AB∥CD,即可求解.(1)解:∵,∴BM∥CN,∴∠CBM=∠BCN,∵,∴∠3+∠CBM=∠4+∠BCN,即∠ABC=∠BCD,∴AB∥CD;(2)解:∵∠ABD=∠EBF,,∴∠ABD=110°,∴∠BAD+∠BDA=70°,∵,∴∠BAD=35°,∵AB∥CD,∴∠ADC=∠BAD=35°.【考点】本题主要考查了平行线的性质和判定,对顶角的性质,三角形的内角和定理,熟练掌握平行线的性质和判定,对顶角的性质,三角形的内角和定理是解题的关键.2、(1)(2)(3)【解析】【分析】(1)根据题意证明,进而可得,根据,即可求解.继而可得,即可求得;(2)根据全等三角形的性质可得,根据三角形内角和定理可得,进而根据即可求解.(3)根据(1)(2)的方法分类讨论即可求解.(1)解:BD平分,,,,,,,,,,,故答案为:,(2)解:由(1)可知,,,,,,,(3)解:设,,,,,当点在点的左侧时,,当点在点的右侧时,,.【考点】本题考查了全等三角形的性质与判定,三角形的内角和定理的应用,掌握全等三角形的性质与判定是解题的关键.3、(1)见解析;(2)【解析】【分析】(1)通过证明,即可求证;(2)利用三角形外角的性质可得,由(1)可得,从而得到,利用三角形内角和的性质即可求解.(1)证明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性质可得∴,∴,【考点】此题考查了全等三角形的判定与性质,三角形内角的性质以及三角形外角的性质,解题的关键是熟练掌握相关基本性质.4、(1)证明见解析;(2)105°.【解析】【详解】(1)根据平行线的性质得出∠D+∠BHD=180°,等量代换得出∠B=∠DHB,根据平行线的判定得出即可;(2)根据平行线的性质求出∠AGB=∠AMD=75°,再根据邻补角的定义即可求出∠AGC的度数.(1)证明:∵AB∥DF,

∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠DHB,∴DE∥BC.(2)解:∵DE∥BC,∠AMD=75°,∴∠AGB=∠AMD=75°,∴∠AGC=180°﹣∠AGB=180°﹣75°=105°.【考点】本题涉及的知识点是平行线的判定及性质.熟练掌握平行线的性质及判定并能准确识图是解题的关键.5、(1)见解析(2)见解析【解析】【分析】(1)先根据角平分线的定义求得∠ACB,进而说明∠ACB=∠3,然后运用同位角相等、两直线平行即可证明;(2)先根据两直线平行、内错角相等可得,进而得到∠BCD=∠2可得EF//DC,运用平行线的性质可得∠BFE=∠BDC,最后结合即可证明.(1)证明:∵CD平分,(已知)∴(角平分线的定义)又∵(已知)∴(等量代换)∴.(2)证明:由(1)知(已证)∴(两直线平行,内错角相等)又∵(已知)∴(等量代换)∴(同位角相等,两直线平行)∴(两直线平行,同位角相等)又∵(已知)∴(垂直的定义)∴(等量代换)∴(垂直的定义).【考点】本题主要考查了平行线的判定与性质、角平分线的定义等知识点,灵活运用平行线线的判定与性质成为解答本题的关键.6、垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行【解析】【分析】根据垂直定义得出,求出,根据平行线的判定推出即可.【详解】解:因为(已知),所以(垂直的定义),同理.所以(等量代换),即.因为(已知),所以(等式的性质,所以(内错角相等,两直线平行).故答案为:垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行【考点】本题考查了垂直定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论