




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华东师大版8年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、若分式有意义,则x满足的条件是()A.x=0 B. C.x=5 D.2、一组数据1,2,,3的平均数是3,则该组数据的方差为()A. B. C.6 D.143、如图,在▱ABCD中,点E在边BC上,连接AE,EM⊥AE,垂足为E,交CD于点M.AF⊥BC,垂足为F.BH⊥AE,垂足为H,交AF于点N,连接AC、NE.若AE=BN,AN=CE,则下列结论中正确的有()个.①;②是等腰直角三角形;③是等腰直角三角形;④;⑤.A.1 B.3 C.4 D.54、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为()A. B. C. D.5、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值()A.小于0 B.等于0 C.大于0 D.非负数6、如图.在长方形纸片ABCD中,AB=12,AD=20,所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.点P,Q分别在边AB、AD上移动,则点A′在BC边上可移动的最大距离为()A.8 B.10 C.12 D.167、某优秀毕业生向我校赠送1080本课外书,现用A、B两种不同型号的纸箱包装运送,单独使用B型纸箱比单独使用A型纸箱可少用6个;已知每个B型纸箱比每个A型纸箱可多装15本.若设每个A型纸箱可以装书x本,则根据题意列得方程为()A. B.C. D.8、矩形ABCD的对角线交于点O,∠AOD=120°,AO=3,则BC的长度是()A.3 B. C. D.6第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,正方形中,为上一动点(不含、,连接交于,过作交于,过作于,连接,.下列结论:①;②;③平分;④,正确的是__(填序号).2、若正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,请写出一个满足上述要求的k的值______.3、如图,在菱形ABCD中,点M、N分别交于AB、CD上,AM=CN,MN与AC交于点O,连接BO.若∠OBC=62°,则∠DAC为____°.4、为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141144145146学生人数(名)5212则这组数据的众数是______;平均数是______.5、平面上的点与坐标(有序实数对)是______的.6、如图,直线y=kx+b交坐标轴于A,B两点,则关于x的不等式kx+b<0的解集是_____.7、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.三、解答题(7小题,每小题10分,共计70分)1、如图,在直角坐标系内,把y=x的图象向下平移1个单位得到直线AB,直线AB分别交x轴于点A,交y轴于点B,C为线段AB的中点,过点C作AB的垂线,交y轴于点D.(1)求A,B两点的坐标;(2)求BD的长;(3)直接写出所有满足条件的点E;点E在坐标轴上且△ABE为等腰三角形.2、在△ABC中,CD⊥AB于点D.(1)如图1,当点D是线段AB中点时,延长AC至点E,使得CE=CB,连接EB.①按要求补全图1;②若AB=2,AC=,求EB的长.(2)如图2,当点D不是线段AB的中点时,作∠BCE(点E与点D在直线BC的异侧),使∠BCE=2∠CAB,CE=CB,连接AE,用等式表示线段AB,CD,AE的数量关系,并说明理由.3、(1)计算:(2)化简:4、如图,一次函数y=-x+5的图象与反比例函数(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的表达式与点B的坐标;(2)在第一象限内,当一次函数y=-x+5的值小于反比例函数(k≠0)的值时,直接写出自变量x的取值范围.5、(1)计算:;(2)分解因式:.6、如图,直线l经过点A(﹣1,﹣2)和B(0,1).(1)求直线l的函数表达式;(2)线段AB的长为_____;(3)在y轴上存在点C,使得以A、B、C为顶点的三角形是以AB为腰的等腰三角形,请直接写出点C的坐标.7、解关于x的方程:.-参考答案-一、单选题1、D【解析】【分析】根据分母不为零,分式有意义进行选择即可.【详解】解:当分母x−5≠0,即x≠5时,分式有意义,故选:D.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2、B【解析】【分析】根据平均数的定义先求出a的值,再根据方差公式进行计算即可.【详解】解:∵数据1,2,a,3的平均数是3,∴(1+2+a+3)÷4=3,∴a=6,∴这组数据的方差为[(1−3)2+(2−3)2+(6−3)2+(3−3)2]=.故选:B.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1−)2+(x2−)2+…+(xn−)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3、C【解析】【分析】证出∠NBF=∠EAF=∠MEC,再证明△NBF≌△EAF(AAS),得出BF=AF,NF=EF,证明△ANB≌△CEA得出∠CAE=∠ABN,推出∠ABF=∠FAC=45°;再证明△ANE≌△ECM得出CM=NE,由NF=NE=MC,得出AF=MC+EC,即可得出结论.【详解】解:∵BH⊥AE,AF⊥BC,AE⊥EM,∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,∴∠NBF=∠EAF=∠MEC,在△NBF和△EAF中,,∴△NBF≌△EAF(AAS);∴BF=AF,NF=EF,∴∠ABC=45°,∠ENF=45°,∴△NFE是等腰直角三角形,故③正确;∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC,∴∠ANB=∠CEA,在△ANB和△CEA中,,∴△ANB≌△CEA(SAS),故①正确;∵AN=CE,NF=EF,∴BF=AF=FC,又∵AF⊥BC,∠ABC=45°,∴△ABC是等腰直角三角形,故②正确;在▱ABCD中,CD∥AB,且△ABC、△NFE都是等腰直角三角形,∴∠ACD=∠BAC=90°,∠ACB=∠FNE=45°,∴∠ANE=∠BCD=135°,在△ANE和△ECM中,,∴△ANE≌△ECM(ASA),故④正确;∴CM=NE,又∵NF=NE=MC,∴AF=MC+EC,∴AD=BC=2AF=MC+2EC,故⑤错误.综上,①②③④正确,共4个,故选:C.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定和性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.4、C【解析】【分析】求出点A、点坐标,求出长即可求出点的坐标.【详解】解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);即,,;以点为圆心、长为半径画弧,与轴正半轴交于点,故,则,点C的坐标为;故选:C【点睛】本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.5、C【解析】【分析】一次函数过第一、二、三象限,则,根据图象结合性质可得答案.【详解】解:如图,函数的图象经过第一、二、三象限,则函数的图象与轴交于正半轴,故选C【点睛】本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.6、A【解析】【分析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】解:①在长方形纸片ABCD中,AB=12,AD=20,∴BC=AD=20,当p与B重合时,BA′=BA=12,CA′=BC-BA′=20-12=8,②当Q与D重合时,由折叠得A′D=AD=20,由勾股定理,得CA′==16,CA′最远是16,CA′最近是8,点A′在BC边上可移动的最大距离为16-8=8,故选:A.【点睛】本题考查了矩形的性质,翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.7、C【解析】【分析】由每个B型包装箱比每个A型包装箱可多装15本课外书可得出每个B型包装箱可以装书(x+15)本,利用数量=总数÷每个包装箱可以装书数量,即可得出关于x的分式方程,此题得解.【详解】解:∵每个A型包装箱可以装书x本,每个B型包装箱比每个A型包装箱可多装15本课外书,∴每个B型包装箱可以装书(x+15)本.依题意得:故选:C.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,解题的关键是正确列出分式方程.8、C【解析】【分析】画出图形,由条件可求得△AOB为等边三角形,则可求得AC的长,在Rt△ABC中,由勾股定理可求得BC的长.【详解】解:如下图所示:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC2=AC2-AB2=36-9=27,∴BC=.故选:D.【点睛】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.二、填空题1、①②④【解析】【分析】连接,延长交于点.可证,进而可得,由此可得出;再由,即可得出;连接交于点,则,证明,即可得出,进而可得;过点作于点,交于点,由于是动点,的长度不确定,而是定值,即可得出不一定平分.【详解】解:如图,连接,延长交于点.∵为正方形的对角线∴,在和中∴∴,∵,,∴∵,∴∴∴故①正确;∵,∴是等腰直角三角形∴故②正确;连接交于点,则∵∴在和中∴∴∴故④正确.过点作于点,交于点,是动点∵的长度不确定,而是定值∴不一定等于不一定平分故③错误;故答案为:①②④.【点睛】本题考查了正方形性质,全等三角形判定和性质,角平分线性质和判定,等腰三角形的性质与判定等,熟练掌握全等三角形判定和性质,合理添加辅助线构造全等三角形是解题关键.2、2(满足k>0即可)【解析】【分析】根据函数图象经过第一、三象限,可判断k>0,任取一个正值即可.【详解】解:∵正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,∴k>0.故答案为:2(满足k>0即可).【点睛】本题考查了正比例函数的性质,解题关键是明确正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限时,k>0.3、28【解析】【分析】由全等三角形的性质可证△AOM≌△CON,可得AO=CO,由等腰三角形的性质可得BO⊥AC,即可求解.【详解】解:∵四边形ABCD是菱形,∴AB//CD,AB=BC,BC//AD,∴∠MAO=∠NCO,∠BCA=∠CAD.在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AO=CO,又∵AB=BC,∴BO⊥AC,∴∠BCO=90°﹣∠OBC=28°=∠DAC.故答案为:28.【点睛】本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,掌握菱形的性质是本题的关键.4、141143【解析】【分析】根据平均数,众数的性质分别计算出结果即可.【详解】解:根据题目给出的数据,可得:平均数为:=143;141出现了5次,出现次数最多,则众数是:141;故答案为:141;143.【点睛】本题考查的是平均数,众数,熟悉相关的计算方法是解题的关键.5、一一对应【解析】略6、x<-2【解析】【分析】根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.【详解】∵点A坐标为(-2,0),∴关于x的不等式kx+b<0的解集是x<-2,故答案为:x<-2【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.7、(0,-5)【解析】【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题.【详解】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,,∴C(0,-5).故答案为:(0,-5)【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.三、解答题1、(1),(2)(3),,,,,,,【解析】【分析】(1)先根据一次函数图象的平移可得直线的函数解析式,再分别求出时的值、时的值即可得;(2)设点的坐标为,从而可得,再根据线段垂直平分线的判定与性质可得,建立方程求出的值,由此即可得;(3)分①点在轴上,②点在轴上两种情况,分别根据建立方程,解方程即可得.(1)解:由题意得:直线的函数解析式为,当时,,解得,即,当时,,即;(2)解:设点的坐标为,,,点为线段的中点,,垂直平分,,即,解得,则;(3)解:由题意,分以下两种情况:①当点在轴上时,设点的坐标为,则,,,(Ⅰ)当时,为等腰三角形,则,解得或,此时点的坐标为或;(Ⅱ)当时,为等腰三角形,则,解得或,此时点的坐标为或(与点重合,舍去);(Ⅲ)当时,为等腰三角形,则,解得,此时点的坐标为;②当点在轴上时,设点的坐标为,则,,,(Ⅰ)当时,为等腰三角形,则,解得或,此时点的坐标为或(与点重合,舍去);(Ⅱ)当时,为等腰三角形,则,解得或,此时点的坐标为或;(Ⅲ)当时,为等腰三角形,则,解得,此时点的坐标为;综上,所有满足条件的点的坐标为,,,,,,,.【点睛】本题考查了一次函数图象的平移、线段垂直平分线的判定与性质、等腰三角形、两点之间的距离公式等知识点,较难的是题(3),正确分情况讨论是解题关键.2、(1)①见解析;②;(2)4CD2+AB2=AE2,见解析【解析】【分析】(1)①按要求画图即可;②根据线段垂直平分线,得出AC=CB,根据CE=CB,得出CD是△ABE的中位线,根据AE=2AC=,利用勾股定理BE=;(2)如图2所示:先证四边形ADCH是矩形,再证△ACE≌△TCB(SAS),根据勾股定理AT2+AB2=BT2,得出(2CD)2+AB2=AE2即可.(1)①延长AC,在AC延长线上,截取CE=CB,补全图形如图1,②解:∵CD⊥AB,D为AB的中点,∴AC=CB,∵CE=CB,∴AC=CE,∴CD是△ABE的中位线,∴CD∥BE,∴AB⊥BE,∴∠ABE=90°,∵AB=,AC=,∴AE=2AC=,∴BE=;(2)如图2所示:线段AB,CD,AE的数量关系为:4CD2+AB2=AE2.证明:如图2中,在AC的上方作△ACT,使得CT=CA,∠ACT=∠BCE,过点C作CH⊥AT于H.∵CA=CT,CH⊥AT,∴AH=HT,∠ACH=∠TCH,∵∠BCE=2∠CAB,∠ECB=∠ACT,∴∠ACH=∠CAB,∴CH∥AB,∴∠CHA=∠HAB=90°,∵CD⊥AB,∴∠ADC=90°,∴四边形ADCH是矩形,∴CD=AH=HT,∴AT=2AH=2CD,∵∠ACT=∠ECB,∴∠ACE=∠TCB,∵CA=CT,CE=CB,∴△ACE≌△TCB(SAS),∴AE=BT,∵AT2+AB2=BT2,∴(2CD)2+AB2=AE2,即4CD2+AB2=AE2.【点睛】本题考查画图,垂直平分线的性质,三角形的中位线,勾股定理,矩形的判定与性质,掌握垂直平分线的性质,三角形的中位线,勾股定理,矩形判定与性质是解题关键.3、(1);(2)【解析】【分析】(1)根据负整数指数幂、零指数幂可以解答本题;(2)根据幂的乘方和同底数幂的乘除法可以解答本题.【详解】解:(1);(2).【点睛】本题考查了幂的乘方、同底数幂的乘除、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.4、(1)反比例函数的表达式为,B的坐标为(4,1);(2)或【解析】【分析】(1)将点A的横坐标代入直线的解析式求出点A的坐标,然后将的A的坐标代入反比例函数的解析式即可;(2)一次函数y=−x+5的值大于反比例函数(k≠0)的值时,双曲线便在直线的下方,所以求出直线与双曲线及x轴的交点后可由图象直接写出其对应的x取值范围.(1)解:∵一次函数y=-x+5的图象过点A(1,n),∴n=-1+5=4∴点A坐标为(1,4),∵反比例函数(k≠0)过点A(1,4),∴k=4,∴反比例函数的表达式为联立,解得,,即点B的坐标为(4,1)(2)解:如图:由图象可知:当或时一次函数y=−x+5的值小于反比例函数的值.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是掌握反比例函数与一次函数的交点与它们的解析式的关系.5、(1);(2)【解析】【分析】(1)利用乘方的意义,零指数幂、负整数指数幂法则计算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 專升本高数题目及答案
- 注塑模实操题目及答案
- 株距行距应用题题目及答案
- 普及型项目管理计划模板
- 智慧树知道网课《带你认识生物药物》课后章节测试满分答案
- 小区畜禽养殖合同协议
- 奥迪A4L驾驶模式培训课件
- 会议策划与执行标准化流程操作手册
- 品牌传播与公关活动效果评估工具表
- 2025公民出国就业合同
- 急诊危重症患者转运专家共识解读课件
- 《发芽小麦粉气流分级产品及其面筋蛋白品质的研究》
- 《手术室感染与预防》课件
- 医院美容科管理规章制度(3篇)
- 皮肤镜课件教学课件
- 民乐社团活动计划
- 青岛版五四制科学五年级上册科学学生活动手册参考答案
- 社区街道网格员安全培训
- GB/T 44698-2024电动踝关节
- 数据安全管理员职业技能竞赛考试题库(含答案)
- 院科两级对核心制度执行率的持续改进案例-儿科I病区运用PDCA循环持续改进三级医师查房制度
评论
0/150
提交评论